Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-09-01T05:15:11.486Z Has data issue: false hasContentIssue false

Band Alignment at Oxide Semiconductor Interfaces

Published online by Cambridge University Press:  01 February 2011

F. Säuberlich
Affiliation:
Institute of Materials Science, Darmstadt University of Technology Petersenstrasse 23, 64287 Darmstadt, Germany
A. Klein
Affiliation:
Institute of Materials Science, Darmstadt University of Technology Petersenstrasse 23, 64287 Darmstadt, Germany
Get access

Abstract

Transparent conductive oxides (TCOs) are important contact materials in thin film solar cells. It is thus important to understand their basic interface properties as the band alignment. We present results on the determination of interfacial properties of TCOs using photoelectron spectroscopy. Large interface dipole potentials are generally observed at interfaces between conducting oxides ZnO, SnO2, In2O3 and TiO2 and chalcogenide semiconductors CdS, CdTe and Cu2S, leading to small conduction band discontinuities in the case of ZnO, SnO2 and In2O3 and to large conduction band discontinuities for TiO2. In addition to the band alignment the Fermi level position at the interface determines the contact properties of TCOs in thin film solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Anderson, R.L., Solid-State Electronics 5 (1962), 341.Google Scholar
[2] Yu, E.T., McCaldin, J.O., and McGill, T.C., in: Solid State Physics, Eds. Ehrenreich, H. and Turnbull, D., (Academic Press, Boston, 1992).Google Scholar
[3] Lang, O., Pettenkofer, C., Sanchez-Royo, J.F., Segura, A., Klein, A., and Jaegermann, W., J. Appl. Phys. 86 (1999), 5687.Google Scholar
[4] Säuberlich, F., Fritsche, J., Hunger, R., and Klein, A., Thin Solid Films 431/432 (2003), 368.Google Scholar
[5] Tiefenbacher, S., Pettenkofer, C., and Jaegermann, W., J. Appl. Phys. 91 (2002), 1984.Google Scholar
[6] Liu, G., Schulmeyer, T., Thissen, A., Klein, A., and Jaegermann, W., Appl. Phys. Lett. 82 (2003), 2269.Google Scholar
[7] Fritsche, J., Gunst, S., Thißen, A., Gegenwart, R., Klein, A., and Jaegermann, W., Mater. Res. Soc. Symp. Proc. 668 (2001), H5.1.Google Scholar
[8] Ruckh, M., Schmid, D., and Schock, H.W., J. Appl. Phys. 76 (1994), 5945.Google Scholar
[9] Wei, S.-H., and Zunger, A., Appl. Phys. Lett. 72 (1998), 2011.Google Scholar
[10] Säuberlich, F., and Klein, A., (to be published),Google Scholar
[11] Hartnagel, H.L., Dawar, A.L., Jain, A.K., and Jagadish, C., Semiconducting Transparent Thin Films (Institute of Physics Publishing, Bristol, 1995).Google Scholar
[12] Madelung, O. (ed); Semiconductors Basic Data (2nd ed.) (Springer Verlag, Berlin, 1996).Google Scholar
[13] Klein, A., Appl. Phys. Lett. 77 (2000), 2009.Google Scholar
[14] Klein, A., Mater. Res. Soc. Symp. Proc. 666 (2001), F1.10.Google Scholar
[15] Fritsche, J., Kraft, D., Thißen, A., Mayer, T., Klein, A., and Jaegermann, W., Thin Solid Films 403-404 (2002), 252.Google Scholar