Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T03:13:13.488Z Has data issue: false hasContentIssue false

Auger Effect Seen in the Porous Silicon Fast Luminescent Band

Published online by Cambridge University Press:  09 August 2011

R. M'ghaïeth
Affiliation:
Laboratoire de Physique des Semiconducteurs, Facult6 des Sciences de Monastir, Route de l'Environnement, 5000 Monastir, Tunisia.
I. Mihalcescu
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier-Grenoble I, BP 87, 38402 St Martin d'Hères Cedex, FRANCE, Irina.Mihalcescu@ujf-grenoble.fr
H. Maâref
Affiliation:
Laboratoire de Physique des Semiconducteurs, Facult6 des Sciences de Monastir, Route de l'Environnement, 5000 Monastir, Tunisia.
J. C. Vial
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier-Grenoble I, BP 87, 38402 St Martin d'Hères Cedex, FRANCE, Irina.Mihalcescu@ujf-grenoble.fr
Get access

Abstract

Time resolved photoluminescence (PL) measurements are performed on oxidized and fresh porous silicon at room temperature. Comparing the evolution of the nanosecond time delayed PL in both cases, a new feature of the PL spectra is identified: the fast-red band, present as well in fresh or aged samples. The nonlinear excitation intensity dependence of this component is described by a simple model where, the Auger effect inside isolated silicon nanocrystallites plays the dominant role.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Mihalcescu, I., Vial, J. C., Bsiesy, A., Muller, F., Romestain, R., Martin, E., Delerue, C., Lannoo, M., and Allan, G., Phys.Rev. B 51, 17 605 (1995)Google Scholar
[2]. Efros, Al. L., Rosen, M., Averboukh, B., Kovalev, D., Ben-Chorin, M. and Koch, F., Phys.Rev.B 56, 3875, (1997)Google Scholar
[3]. Kovalev, D., Heckler, H., Averboukh, B., Ben-Chorin, M., Schwartzkopff, M. and Koch, F., Phys.Rev.B 57, 3741,(1998)Google Scholar
[4]. Delerue, C., Lannoo, M., Allan, G., Martin, E., Mihalcescu, I., Vial, J.C., Romestain, R., Muller, F. and Bsiesy, A., Phys.Rev.Lett. 75, 2228 (1995)Google Scholar
[5]. Kanemitsu, Y., Phys.Rev.B 49, 16845 (1994); P. Maly, F. Trojanek, and J. Kudrna, A. Hospodkova, S. Banas, V. Kohlova, J. Valenta, I. Pelant, Phys.Rev. B 54, 7929 (1996).Google Scholar
[6]. Prokes, S. M., Appl.Phys.Lett. 62, 3244 (1993); A. G. Cullis, L. T. Canham, G. M. Williams, P. W. Smith, and O. D. Dosser, J.Appl.Phys. 75, 493 (1994); H. Tamura, M. Ruckschloss, T. Wirschem, and S. Verpeck, Appl.Phys.Lett. 65, 1537 (1994);Google Scholar
[7]. Kovalev, D. I., Yaroshelskii, I. D., Muschik, T., Petrova-Koch, V., and Koch, F., Appl]Phys.Lett. 64, 214 (1994)Google Scholar
[8]. Canham, L. T., Loni, A., Calcott, P. D. J., Simsons, A. J., Reeves, C., Houlton, M. R., Newey, J. P., Nash, K. J., Cox, T. I., Thin Solid Films, 276, 112 (1996)Google Scholar
[9]. Fauchet, P. M., Phys.Stat.Sol. (b) 190, 53 (1995)Google Scholar
[10]. Komuro, S., Kato, T., Morikawa, T., O'Keeffe, P., Aoyagi, Y., J.Appl.Phys. 80, 1749 (1996)Google Scholar
[11]. Harris, C. I., Syvajarvi, M., Bergman, J. P., Kordina, O., Henry, A., Monemar, B. and Janzen, E., Appl.Phys.Lett. 65, 2451 (1994)Google Scholar
[12].The depth dependence of the excitation intensity, due to the layer absorption at the excitation wavelength was considered: Iex (z) = Iex exp(– oz ) with α the absorption coefficient. The intensity of luminescence becomes: I (1 – exp( –σI ex (z))dz with l, the layer thickness.Google Scholar
[13]. For a maximum pulse energy of about 10mJ/cm2 one has 2.1016 cm−2 photons which will be absorbed in the porous layer, in a proportion of (1−exp(−αl)) ≅ 0.8 (e.g. for the fresh layer). Taking an average density of the silicon crystallites of about 1018 cm−3, one obtains an average number of excited e h pair/crystallite of ≅200. This corresponds to the highesi excitation intensity, meaning that in our experiment the average number of e h pairs excited inside a crystallite during the laser pulse, is scanned from 1 to 200.Google Scholar
[14]. Ghanassi, M., Schanne-Klein, M. C., Hache, F., Ekimov, A. I., Ricard, D. and Flytzanis, C., Appl.Phys.Lett. 62, 78 (1993)Google Scholar
[15].K = 1.5/aα*(1-exp(−2αl/3)) ≅ 0.3cm for the fresh sample and K≅0.25cm for the oxidized one.Google Scholar