Skip to main content Accessibility help

Auger Effect Seen in the Porous Silicon Fast Luminescent Band

  • R. M'ghaïeth (a1), I. Mihalcescu (a2), H. Maâref (a1) and J. C. Vial (a2)


Time resolved photoluminescence (PL) measurements are performed on oxidized and fresh porous silicon at room temperature. Comparing the evolution of the nanosecond time delayed PL in both cases, a new feature of the PL spectra is identified: the fast-red band, present as well in fresh or aged samples. The nonlinear excitation intensity dependence of this component is described by a simple model where, the Auger effect inside isolated silicon nanocrystallites plays the dominant role.



Hide All
[1]. Mihalcescu, I., Vial, J. C., Bsiesy, A., Muller, F., Romestain, R., Martin, E., Delerue, C., Lannoo, M., and Allan, G., Phys.Rev. B 51, 17 605 (1995)
[2]. Efros, Al. L., Rosen, M., Averboukh, B., Kovalev, D., Ben-Chorin, M. and Koch, F., Phys.Rev.B 56, 3875, (1997)
[3]. Kovalev, D., Heckler, H., Averboukh, B., Ben-Chorin, M., Schwartzkopff, M. and Koch, F., Phys.Rev.B 57, 3741,(1998)
[4]. Delerue, C., Lannoo, M., Allan, G., Martin, E., Mihalcescu, I., Vial, J.C., Romestain, R., Muller, F. and Bsiesy, A., Phys.Rev.Lett. 75, 2228 (1995)
[5]. Kanemitsu, Y., Phys.Rev.B 49, 16845 (1994); P. Maly, F. Trojanek, and J. Kudrna, A. Hospodkova, S. Banas, V. Kohlova, J. Valenta, I. Pelant, Phys.Rev. B 54, 7929 (1996).
[6]. Prokes, S. M., Appl.Phys.Lett. 62, 3244 (1993); A. G. Cullis, L. T. Canham, G. M. Williams, P. W. Smith, and O. D. Dosser, J.Appl.Phys. 75, 493 (1994); H. Tamura, M. Ruckschloss, T. Wirschem, and S. Verpeck, Appl.Phys.Lett. 65, 1537 (1994);
[7]. Kovalev, D. I., Yaroshelskii, I. D., Muschik, T., Petrova-Koch, V., and Koch, F., Appl]Phys.Lett. 64, 214 (1994)
[8]. Canham, L. T., Loni, A., Calcott, P. D. J., Simsons, A. J., Reeves, C., Houlton, M. R., Newey, J. P., Nash, K. J., Cox, T. I., Thin Solid Films, 276, 112 (1996)
[9]. Fauchet, P. M., Phys.Stat.Sol. (b) 190, 53 (1995)
[10]. Komuro, S., Kato, T., Morikawa, T., O'Keeffe, P., Aoyagi, Y., J.Appl.Phys. 80, 1749 (1996)
[11]. Harris, C. I., Syvajarvi, M., Bergman, J. P., Kordina, O., Henry, A., Monemar, B. and Janzen, E., Appl.Phys.Lett. 65, 2451 (1994)
[12].The depth dependence of the excitation intensity, due to the layer absorption at the excitation wavelength was considered: Iex (z) = Iex exp(– oz ) with α the absorption coefficient. The intensity of luminescence becomes: I (1 – exp( –σI ex (z))dz with l, the layer thickness.
[13]. For a maximum pulse energy of about 10mJ/cm2 one has 2.1016 cm−2 photons which will be absorbed in the porous layer, in a proportion of (1−exp(−αl)) ≅ 0.8 (e.g. for the fresh layer). Taking an average density of the silicon crystallites of about 1018 cm−3, one obtains an average number of excited e h pair/crystallite of ≅200. This corresponds to the highesi excitation intensity, meaning that in our experiment the average number of e h pairs excited inside a crystallite during the laser pulse, is scanned from 1 to 200.
[14]. Ghanassi, M., Schanne-Klein, M. C., Hache, F., Ekimov, A. I., Ricard, D. and Flytzanis, C., Appl.Phys.Lett. 62, 78 (1993)
[15].K = 1.5/aα*(1-exp(−2αl/3)) ≅ 0.3cm for the fresh sample and K≅0.25cm for the oxidized one.

Auger Effect Seen in the Porous Silicon Fast Luminescent Band

  • R. M'ghaïeth (a1), I. Mihalcescu (a2), H. Maâref (a1) and J. C. Vial (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed