Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-10T14:41:04.063Z Has data issue: false hasContentIssue false

Atomistic Study of Cleavage and Dislocation Emission in NiAl

Published online by Cambridge University Press:  22 February 2011

M. Ludwig
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
P. Gumbsch
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
Get access

Abstract

The atomistic processes during fracture of NiAl are studied using a new embedded atom (EAM) potential to describe the region near the crack tip. To provide the atomistically modeled crack tip region with realistic boundary conditions, a coupled finite element - atomistic (FEAt) technique [1] is employed. In agreement with experimental observations, perfectly brittle cleavage is observed for the (110) crack plane. In contrast, cracks on the (100) plane either follow a zig-zag path on (110) planes, or emit dislocations. Dislocation generation is studied in more detail under mixed mode I/II loading conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kohlhoff, S., Gumbsch, P., and Fischmeister, H. F., Phil. Mag. A 64, 851 (1991).Google Scholar
[2] Chang, K.-M., Darolia, R., and Lipsitt, H. A., Acta metall. mater. 40, 2727 (1992).Google Scholar
[3] Vehoff, H., in Ordered Intermetallics (Kluwer Academic, Netherlands, 1992), pp. 299320.Google Scholar
[4] Darolia, R., Chang, K.-M., and Hack, J. E., Intermetallics 1, 65 (1993).Google Scholar
[5] Brzeski, J. M., Hack, J. E., Darolia, R., and Field, R. D., Mat. Sci. Eng. A170, 11 (1993).Google Scholar
[6] Schneibel, J. H. et al., Metall. Trans 24A, 1363 (1993).Google Scholar
[7] Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
[8] Rao, S. I., Woodward, C., and Parthasarathy, T. A., in Mat. Res. Soc. Symp. Proc. 213 (Pittsburgh, 1991), p. 125.Google Scholar
[9] Rubini, S. and Ballone, P., Phys. Rev. B 48, 99 (1993).Google Scholar
[10] Yan, M. and Vitek, V. (private communication).Google Scholar
[11] Ludwig, M. and Gumbsch, P. (manuscripts in preparation).Google Scholar
[12] Voter, A. F. and Chen, S. P., in Mat. Res. Soc. Symp. Proc. 82 (Pittsburgh, 1987), p. 175.Google Scholar
[13] Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).Google Scholar
[14] Bradley, A. J. and Taylor, A., Proc. Roy. Soc. London A 159, 56 (1937).Google Scholar
[15] Paxton, A. T., in Twinning in Advanced Materials, edited by Yoo, M. H. and Wuttig, M. (TMS, Warrendale, PA, 1994); (private communication).Google Scholar
[16] Kittel, C., Introduction to Solid State Physics (Wiley-Interscience, New York, 1986).Google Scholar
[17] Hultgren, R. et al., Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metals Park, OH, 1973).Google Scholar
[18] Rusovi, N.ć and Warlimont, H., phys. stat. sol. a 44, 609 (1977).Google Scholar
[19] Stassis, S., phys. stat. sol. a 64, 335 (1981).Google Scholar
[20] Methfessel, M., Phys. Rev. B 38, 1537 (1988).Google Scholar
[21] Sih, G. C. and Liebowitz, H., in Fracture, edited by Liebowitz, H. (Academic Press, New York, 1968), Vol. 2, pp. 67190.Google Scholar
[22] Kim, D., Clapp, P. C. and Rifkin, J. A., in Mat. Res. Soc. Symp. Proc. 213 (Pittsburgh, 1991), p. 249.Google Scholar
[23] Rice, J. R., J. Mech. Phys. Solids 40, 239 (1992).Google Scholar