Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T21:54:53.980Z Has data issue: false hasContentIssue false

Atomistic Studies of Interfacial Structure and Properties*

Published online by Cambridge University Press:  26 February 2011

Stephen M. Foiles
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
Michael I. Baskes
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
Murray S. Daw
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
Get access

Abstract

The computer simulation of the structure and fracture of interfaces on an atomic scale requires a computationally efficient prescription for the total energy that is reliable both for small deviations from the bulk as well as for the free surfaces produced during fracture. The recently developed Embedded Atom Method is such a method. It will be briefly described and compared to traditional pair interaction approaches. In particular, it will be shown that the many-body effects inherent in the Embedded Atom Method are essential to correctly describe the experimentally observed surface reconstructions of Au surfaces.

The necessary first step in simulating the fracture of an interface, such as a grain boundary, is the determination of the initial or equilibrium atomic configuration of the interface. Equilibrium Monte Carlo simulations using the Embedded Atom Method can determine this structure. This approach will be outlined and various results for grain boundary structure in fcc metals will be presented. The atomic structure of symmetric tilt boundaries is found to be significantly different from that deduced from energy minimization techniques. In addition, the Monte Carlo technique allows for the determination of thermal effects such as the vibrational amplitudes at the interface and the thermal expansion of the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science

References

REFERENCES

1. For example, Krakow, W., Wetzel, J.T. and Smith, D.A., Phil. Mag. A51, 739 (1986).Google Scholar
2. Budai, J., Bristowe, P. D. and Sass, S.L., Acta Met. 31, 699 (1983).CrossRefGoogle Scholar
3. Daw, M.S. and Baskes, M.I., Phys. Rev. B29, 6443 (1984).Google Scholar
4. Binder, K., “Monte Carlo Methods in Statistical Physics”, 2nd ed., (Springer-Verlag, Berlin, 1986).Google Scholar
5. Yip, S., Comments Solid State Phys. 4, 125 (1984).Google Scholar
6. Baskes, M.I. and Melius, C.F., Phys. Rev. B2M, 3197 (1979); “Interatomic Potentials and Simulation of Lattice Defects”, ed. by P.C. Gehlen, J.R. Beeler and R.I. Jaffee (Plenum, New York, 1971).Google Scholar
7. Harrison, W.A., “Pseudopotentials in the Theory of Metals” (Benjamin, New York, 1966).Google Scholar
8. Foiles, S.M., M.I.Baskes and Daw, M.S., Phys. Rev. B33, 7983 (1986).Google Scholar
9. Daw, M.S., to be published.Google Scholar
10. Jacobsen, K.W., Norskov, J.K. and Puska, M.J., Phys. Rev. B25, 7423 (1987).Google Scholar
11. Daw, M.S., Surf. Sci. 166, L161 (1986); S.M. Foiles, Surf. Sci. 191, L779 (1987).Google Scholar
12. Daw, M.S. and Foiles, S.M., Phys. Rev. Lett. 59, 2756 (1987).Google Scholar
13. Ercolessi, F., Tosatti, E., and Parrinello, M., Phys. Rev. Lett. 51, 719 (1986).Google Scholar
14. Dodson, B.W., Phys. Rev. B35, 880 (1987).CrossRefGoogle Scholar
15. Foiles, S.M., Phys. Rev. B32, 7685 (1985).Google Scholar
16. Foiles, S.M., in “Physical and Chemical Properties of Thin Metal Overlayers and Alloy Surfaces”, ed. Zehner, D.M. and Goodman, D.W. (Materials Research Society, Pittsburgh, 1987).Google Scholar
17. Daw, M.S., Baskes, M.I., Bisson, C.L. and Wolfer, W.G., in “Modeling Environmental Effects on Crack Growth Processes”, ed. Jones, R.H. and Gerberich, W.W. (TMSAIME, New York, 1986).Google Scholar
18. Foiles, S.M. and Daw, M.S., J. Mater. Res. 2 5 (1987).CrossRefGoogle Scholar
19. Foiles, S.M., in ”High-Temperature Ordered Intermetallic Alloys II”, ed. Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Materials Research Society, Pittsburgh, 1987).Google Scholar
20. Foiles, S.M., Phys. Rev. B32, 3409 (1985).Google Scholar
21. Chan, C.M. and Hove, M.A. Van, Surf. Sci. 171, 226 (1986), and references therein.CrossRefGoogle Scholar
22. Moritz, W. and Wolf, D., Surf. Sci. 163, L655 (1985).Google Scholar
23. Campuzano, J.C., Jennings, G. and Willis, R.F., Surf. Sci. 162, 484 (1985).Google Scholar
24. Rieder, K.H., Engel, T., Swendsen, R.H. and Manninen, M., Surf. Sci. 127, 223 (1983).Google Scholar
25. Binnig, G.K., Rohrer, H., Gerber, Ch. and Stoll, E., Surf. Sci. 144, 321 (1984).CrossRefGoogle Scholar
26. Ercolessi, F., Tosatti, E. and Parrinello, M., Phys. Rev. Lett. 57, 719 (1986).Google Scholar
27. Dodson, B.W., Phys. Rev. B35, 880 (1987).Google Scholar
28. Harrison, R.J., Bruggeman, G.A. and Bishop, G.A., in “Grain Boundary Structure and Properties”, ed. Chadwick, G.A. and Smith, D.A. (Academic Press, New York, 1976).Google Scholar
29. Wolf, D., Proc. of ASM Materials Science Sem. on “Computer Simulation in Materials Science; Forging: A Case Study”, Orlando, Fl. Oct 3-4, 1986.Google Scholar
30. Sutton, A.P. and Vitek, V., Phil. Trans. R. Soc. Lond. A309, 1 (1983).Google Scholar
31. Krakow, W., Wetzel, J.T., Smith, D.A. and Trefas, G., Proceedings of the Materials Research Society Symposium on Advanced Photon and Particle Characterization Techniques for Defects in Solids, v. 41, p. 253.Google Scholar
32. Oh, Y. and Vitek, V., Acta Met. 34, 1941 (1986).Google Scholar
33. Fitzsimmons, M.R. and Sass, S.L., to be published.Google Scholar
34.International Tables for X-Ray Crystallography”, vol. III, ed. Macgillavry, C.H. and Rieck, G.D., (D. Reidel Publishing Co., 1983), p. 233.Google Scholar
35. Klam, H.J., Hahn, H. and Gleiter, H., Acta Metall. 35, 2101 (1987).CrossRefGoogle Scholar
36. Stoltze, P., Jacobsen, K.W. and Norskov, J.K., Phys. Rev. B36, 5035 (1987).Google Scholar
37. Gschneider, K.A. Jr., “Solid State Physics”, v. 16 ed. Seitz, F. and Turnball, D. (Academic Press, New York, 1964).Google Scholar