Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T18:20:23.627Z Has data issue: false hasContentIssue false

Atomistic Simulations of [001] Symmetric Tilt Boundaries in Ni3Al

Published online by Cambridge University Press:  28 February 2011

S. P. Chen
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
A. F. Voter
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
D. J. Srolovitz
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We report a systematic atomistic simulation study of [001] symmetric tilt grain boundaries (GB) in Ni3Al, Ni, and Al. We found that the grain boundary energies and cohesive energies of Ni3Al and pure fcc Ni are approximately thesame. Grain boundary energies aid cohesive energies in Ni3Al depends stronglyon the grain boundary composition. The Al-rich boundaries have highest grain boundary energies and lowest cohesive energies. This offers an explanation for the stoichiometric effect on the boron ductilization

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Westbrook, J. H., Trans. A.I.M.E. 209, 898 (1957).Google Scholar
[2] Westbrook, J. H., in Mechanical Properties of Intermetallic Compounds, Ed. Westbrook, J. H., Wiley, New York (1960).Google Scholar
[3] Aoki, K. and Izumi, O., Nippon Kinsoku Gakkaishi 43, 1190 (1979).Google Scholar
[4] Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).Google Scholar
[5] Chen, S. P., Voter, A. F., and Srolovitz, D. J., Scripta, Metall. 20, 1389 (1986).Google Scholar
[6] Ogura, T., Havada, S., Masumoto, T., and Izumi, O., Metall. Trans. 16A, 441 (1985); T. Takasugi, E. P. George, D. P. Pope, and O. Izumi, Scripta Metall. 19, 551 (1985).Google Scholar
[7] Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
[8] Foiles, S., Baskes, M. I., and Daw, M. S., Phys. Rev. B, in press (1986); M. S. Daw, Surf., Sci. Lett. 166, L161 (1986); S. P. Chen, A. F. Voter and D. J. Srolovitz, Phys. Rev. Lett. 57, 1308 (1986).Google Scholar
[9] Voter, A. F., to be published, Voter, A. F. and Chen, S. P., MRS conference proceedings, Symposium I (1986).Google Scholar
[10] Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).Google Scholar
[11] Kear, B. H. and Wilsdorf, H. G. F., Trans. A.I.M.E. 224, 382 (1962); S. Takeuchi and E. Kuramoto, Acta Metall. 21, 415 (1973).Google Scholar
[12] Smith, D. A., Vitek, V., and Pond, R. C., Acta Metall. 25, 475 (1977); R. C. Pond, D. A. Smith, and V. Vitek, Acta Metall. 27, 235 (1979).Google Scholar
[13] Hack, J. E., Srolovitz, D. J., and Chen, S. P., Scripta, Metall. (1986) in press.Google Scholar
[14] Miller, M. K. and Hoton, J. A., (1986), preprint.Google Scholar