Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T09:34:44.671Z Has data issue: false hasContentIssue false

Atomically Smooth Ultrathin Oxide Layers on SI(113)

Published online by Cambridge University Press:  10 February 2011

H.-J. Müssig
Affiliation:
Institute for Semiconductor Physics (IHP), Walter-Korsing-Str. 2, D-15230 Frankfurt (Oder), Germany
J. Dabrowski
Affiliation:
Institute for Semiconductor Physics (IHP), Walter-Korsing-Str. 2, D-15230 Frankfurt (Oder), Germany
S. Hinrich
Affiliation:
Institute for Semiconductor Physics (IHP), Walter-Korsing-Str. 2, D-15230 Frankfurt (Oder), Germany
Get access

Abstract

We report the first direct observation of dissociative chemisorption of oxygen molecules on a silicon surface at room temperature via a molecular precursor state. We link this to the fact that smooth oxide layers can be grown easily on Si(113). The process of initial oxidation is discussed in terms of surface diffusion paths and surface stress. First ab initiocalculations help elucidate the favored adsorption sites and the oxidation mechanism. Experimental evidence was found for bond geometries resulting in the quasi-epitaxial growth of a chemisorption layer on the substrate at elevated temperatures (600°C). In contrast to the first stages of Si(001) oxidation, neither defects nor the ejection of Si atoms plays a significant role during the initial oxidation of Si(113).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lo, A.-H., Buchanan, D.A., Taur, Y., and Wang, W., IEEE Electron Device Letters 18, p. 209 (1997).10.1109/55.568766Google Scholar
2 Wilson, R., Electronic Engineering Times, July 06, 1998, Issue: 1015, Section: News (Internet page posted at http://www.techweb.com/se/directlink.cgi?EET19980706S0026).Google Scholar
3 Martel, R., Avouris, Ph., and Lyo, W., Science 272, p. 385 (1996).10.1126/science.272.5260.385Google Scholar
4 Dąbrowski, J., Müssig, H.-J., and Wolff, G., Phys. Rev. Lett. 73, p. 1660 (1994).10.1103/PhysRevLett.73.1660Google Scholar
5 Dąbrowski, J., Müssig, H.-J., Wolff, G., and Hinrich, S., Surf. Sci. 411, p. 54 (1998).10.1016/S0039-6028(98)00327-6Google Scholar
6 Perdew, P. and Zunger, A., Phys. Rev. B 23, p. 5048 (1981).10.1103/PhysRevB.23.5048Google Scholar
7 Bachelet, G.B., Hamann, D.R., and Schlüter, M., Phys. Rev. B 26, p. 4199 (1982).10.1103/PhysRevB.26.4199Google Scholar
8 Kleinman, L. and Bylander, D.M., Phys. Rev. Lett. 48, p. 1425 (1982).10.1103/PhysRevLett.48.1425Google Scholar
9 Gonze, X., Stumpf, R., and Scheffler, M., Phys. Rev. B 44, p. 8503 (1991).10.1103/PhysRevB.44.8503Google Scholar
10 Car, R. and Parinello, M., Phys. Rev. Lett. 55, p. 2471 (1985); M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Computer Physics Commun. 107, p. 187 (1997).10.1103/PhysRevLett.55.2471Google Scholar
11 Tersoff, J. and Hamann, D. R., Phys. Rev. B 31, p. 805 (1985).10.1103/PhysRevB.31.805Google Scholar
12 Ranke, W., Phys. Rev. B 41, p. 5243 (1990).10.1103/PhysRevB.41.5243Google Scholar
13 Knall, J., Pethica, J.B., Todd, J.D., and Wilson, J.H., Phys. Rev. Lett. 66, p. 1733 (1991).10.1103/PhysRevLett.66.1733Google Scholar
14 Xing, Y.R., Zhang, J.P., Wu, J.A., Liu, C.Z., and Wang, C.H., Surf. Sci. Lett. 232, p. L215 (1990).10.1016/0039-6028(90)90111-KGoogle Scholar
15 Chadi, D.J., Phys. Rev. Lett. 59, p. 1691 (1987).10.1103/PhysRevLett.59.1691Google Scholar
16 Lander, J. J. and Morrison, J., J. Appl. Phys. 33, p. 2089 (1962).10.1063/1.1728901Google Scholar
17 Smith, F. W. and Ghidini, G., J. Electrochem. Soc. 129, p. 1300 (1982).10.1149/1.2124122Google Scholar
18 Seiple, J. V. and Pelz, J. P., J. Vac. Sci. Technol. A 13, p. 772 (1995).10.1116/1.579825Google Scholar
19 Seiple, J. V. and Pelz, J. P., Phys. Rev. Lett. 73, p. 999 (1994).10.1103/PhysRevLett.73.999Google Scholar
20 Avouris, Ph. and Cahill, D., Ultramicroscopy 42–44, p. 838 (1992).10.1016/0304-3991(92)90366-RGoogle Scholar
21 Udagawa, M., Umetani, Y., Tanaka, H., Itoh, M., Uchiyama, T., Watanabe, Y., Yokotsuka, T., and Sumita, I., Ultramicroscopy 42–44, p. 946 (1992).10.1016/0304-3991(92)90383-UGoogle Scholar
22 Xing, Y. R., Zhang, J. P., Wu, J. A., Liu, C. Z., and Wang, C. H., Surf. Sci. Lett. 232, p. L215 (1990).10.1016/0039-6028(90)90111-KGoogle Scholar
23 Dąbrowski, J., Mtissig, H.-J., and Wolff, G., J. Vac. Sci. Technol. B 13, p. 1597 (1995).10.1116/1.587863Google Scholar