Skip to main content Accessibility help
×
Home

Atomic Transformations and Quantum Transport in Carbon Nanotubes

  • J. Bernholc (a1), M. Buongiorno Nardelli (a1), J.-L. Fattebert (a1), D. Orlikowski (a1), C. Roland (a1), F. Rosef (a1) and Q. Zhao (a1)...

Abstract

High strain conditions can lead to a variety of atomic transformations in nanotubes, which usually occur via successive bond rotations. The energetic barrier for the rotation is dramatically lowered by strain, and ab initio results for its strain dependence are presented. While very high strain rates must lead to tube breakage, (n,m) nanotubes with n, m < 14 can display plastic flow under suitable conditions. This occurs through the formation of a 5-7-7-5 defect, which then splits into two 5-7 pairs. The index of the tube changes between the 5-7 pairs, potentially leading to metal-semiconductor junctions. The high strain conditions can be imposed on the tube via, e.g., AFM tip manipulations, and we show that such procedures can lead to intratube device formation.

The defects and the index changes occurring during the mechanical transformations also affect the electrical properties of nanotubes. We have computed the quantum conductances of strained defective and deformed tubes using the tight binding method. The results show that the defect density and the contacts play key roles in reducing the conductance at the Fermi energy. We also explored the role of bending in changing the electrical properties and found that mechanical deformations affect differently the transport properties of achiral and chiral nanotubes. Our results are in good agreement with recent experimental data.

Copyright

References

Hide All
[1] Iijima, S., Brabec, C., Maiti, A. and Bernholc, J., J. Chem. Phys. 104, 2089 (1996).
[2] Yakobson, B.I., Brabec, C. J., and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).
[3] Despres, J., Daguerre, E. and Lafdi, K., Carbon 33, 87 (1995).
[4] Chopra, N., Benedict, L., Crespi, V., Cohen, M.L., Louie, S.G. and Zettl, A., Nature 377, 135 (1995); R. Ruoff and D. Lorents, Bull. Am. Phys. Soc. 40, 173 (1995).
[5] See, for instance, Falvo, M.R., Clary, G.J., Taylor, R.M. II, Chi, V., Brooks, F.P. Jr., Washburn, S. and Superfine, R., Nature 389, 582 (1997).
[6] Nardelli, M. Buongiorno, Yakobson, B.I. and Bernholc, J., Phys. Rev. B 57, R4277 (1998); Phys. Rev. Lett. 81, 4656 (1998).
[7] Stone, A.J. and Wales, D.J., Chem. Phys. Lett. 128, 501 (1986).
[8] Collins, P.G., Zettl, A., Bando, H., Thess, A. and Smalley, R., Science 278, 100 (1996); S.N. Song, X.K. Wang, R.P.H. Chang and J.B. Ketterson, Phys. Rev. Lett. 72, 697 (1994); L. Langer, L. Stockman, J.P. Heremans, V. Bayot, C.H. Olk, C. Van Haesendonck, Y. Bruynseraede and J.P. Issi, J. Mater. Res. 9, 927 (1994); L. Langer, V. Bayot, E. Grivei, J.P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. Van Haesendonck and Y. Bruynseraede, Phys. Rev. Lett. 76, 479 (1996); S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Georliga and C. Dekker, Nature 386, 474 (1997); A. Bachtold, C. Strunk, J.P. Salvetat, J.M. Bonnard, L. Forré, T. Nussbaumer and C. Schonenberger, Nature 397, 673 (1999).
[9] Bezryadin, A., Verschueren, A.R.M., Tans, S.J. and Dekker, C., Phys. Rev. Lett. 80, 4036 (1998).
[10] Paulson, S., Falvo, M.R., Snider, N., Helser, A., Hudson, T., Seeger, A., Taylor, R.M. II, Superfine, R. and Washburn, S., http://xxx.lanl.gov/abs/cond-mat/9905304, preprint (1999).
[11] Tian, W. and Datta, S., Phys. Rev. B 49, 5097 (1994).
[12] Saito, R., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B 53, 2044 (1996).
[13] Chico, L., Benedict, L.X., Louie, S.G. and Cohen, M.L., Phys. Rev. B 54, 2600 (1996).
[14] Tamura, R. and Tsukada, M., Phys. Rev. B 55, 4991 (1997); ibid, 58, 8120 (1998).
[15] Anantran, M.P. and Govindan, T.R., Phys. Rev. B 58, 4882 (1998).
[16] Farajian, A.A., Esfarjani, K. and Kawazoe, Y., Phys. Rev. Lett. 82, 5084 (1999).
[17] Choi, H.J. and Ihm, J., Phys. Rev. B 59, 2267 (1999).
[18] Rochefort, A., Lesage, F., Salahub, D.R. and Avouris, P., http://xxx.lanl.gov/abs/condmat/9904083, preprint (1999).
[19] Nardelli, M. Buongiorno, Phys. Rev. B, 60, 7828 (1999).
[20] See, for instance, Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C., Science of fullerenes and carbon nanotubes (Academic Press, San Diego, 1996). We do not discuss the many-body effects that may lead to insulating behavior at temperatures near O K.
[21] Blase, X., Benedict, L.X., Shirley, E.L. and Louie, S.G., Phys. Rev. Lett. 72, 1878 (1994).
[22] Ihm, J. and Louie, S.G., private communication (1999).
[23] Nardelli, M. Buongiorno and Bernholc, J., unpublished (1999).
[24] Crespi, V.H., Cohen, M.L. and Rubio, A., Phys. Rev. Lett. 79, 2093 (1997).

Related content

Powered by UNSILO

Atomic Transformations and Quantum Transport in Carbon Nanotubes

  • J. Bernholc (a1), M. Buongiorno Nardelli (a1), J.-L. Fattebert (a1), D. Orlikowski (a1), C. Roland (a1), F. Rosef (a1) and Q. Zhao (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.