Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T01:54:52.129Z Has data issue: false hasContentIssue false

Atomic Size Effects on the Composition Range of Binary Amorphous Alloys

Published online by Cambridge University Press:  26 February 2011

S. H. Liou
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218
C. L. Chien
Affiliation:
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218
Get access

Abstract

We have studied a number of binary metal-metal and metalloid alloy systems made by a single vapor quench method under very consistent conditions. In each case, amorphous alloys are found in one continuous composition range (Xmin<x<xXmax) regardless of the number of eutectic points in the equilibrium phase diagrams. It is found that the atomic size difference is the single most important factor in the quantitative determination of the composition range.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. e.g. Chen, H.S., Rep. Prog. Phys. 43, 353 (1980); Amorphous Metallic Alloys, eds. F.E. Luborsky (Butterworth, London 1983).CrossRefGoogle Scholar
2. Nagel, S.R. and Tauc, J., Phys. Rev. Lett. 35, 380 (1975).CrossRefGoogle Scholar
3. Polk, D.E., Scr. Metall. 4, 117 (1970).CrossRefGoogle Scholar
4. Bernal, J.D., Pro. Roy. Soc. A 280, 299 (1964).Google Scholar
5. Chien, C.L. and Unruh, K.M.. Phys. Rev. B25, 5790 (1982).CrossRefGoogle Scholar
6. Liou, S.H. and Chien, C.L., J. Appl. Phys. 55, 1820 (1984).CrossRefGoogle Scholar
7. Fukamichi, K. and Gambino, R.J., IEEE Trans. Magn. MAG–17, 3059 (1981).CrossRefGoogle Scholar
8. Sumiyama, K. and Nakamura, Y., J. Mag. Mag. Mat. 35, 219 (1983).CrossRefGoogle Scholar
9. Schwartz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
10. Egami, T. and Waseda, Y., J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
11. Marchal, G., Mangin, Ph., Piecuch, M., Janot, Chr. and Hubsoh, J., J. Phys. F7, L165 (1977).CrossRefGoogle Scholar
12. Miedema, A.R., Z. Metallkde, 70, 345 (1979).Google Scholar
13. Liu, B., Johnson, W.L., Nicolet, M.-A. and Lau, S.S., Appl. Phys. Lett 42, 45 (1983).CrossRefGoogle Scholar
14. Giessen, e.g. B.C., Proc. 4th Int. Conf. on Rapidly Quenched Metals, eds. Masumoto, T. and Suzuki, K., Vol. 1. p. 213.Google Scholar
15. Chien, C.L., Liou, S.H., Kofalt, D.K., Yu, W., Egami, T. and McGuire, T.R., Phys. Rev. B33, 3247(1986).CrossRefGoogle Scholar