Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-27T16:52:11.463Z Has data issue: false hasContentIssue false

Atomic Scale Modeling of the Silicon (100) Thermal Oxidation, A Kinetic Monte Carlo Approach

Published online by Cambridge University Press:  10 February 2011

A. Esteve
Affiliation:
SIGMA+, 5 place Saint-Pierre, 31000 Toulouse, France LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France, aesteve@laas.fr
M. Djafari Rouhani
Affiliation:
LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France, aesteve@laas.fr LPS, Univ. Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
Ph. Faurous
Affiliation:
LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France, aesteve@laas.fr
D. Esteve
Affiliation:
LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France, aesteve@laas.fr
Get access

Abstract

In this paper, we propose an original approach of the silicon (100) dry thermal oxidation modeling that is capable to reproduce the oxidation dynamics at the atomic level and at a large scale comparing with ab initio methods. This approach is based on the use of a Monte Carlo procedure to manage the temporal aspect. In conjunction with experimental literature data, first principle calculations have been carried out with the objective of isolating some elementary oxidation mechanisms, i.e. basic atomic movements and their corresponding energies. This preliminary list of mechanisms is discussed in detail. A growth mechanism allowing the oxide defect generation is proposed. Finally, we present Monte Carlo calculations with the implemented mechanisms where at least three silicon layers are oxidized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Diebold, A.C., Monahan, K., Solid State Technology 41, p. 50 (1998)Google Scholar
2 Miyamoto, Y. and Oshiyama, A., Phys. Rev. B 41, p. 12680 (1990)10.1103/PhysRevB.41.12680Google Scholar
3 Uchiyama, T. and Tsukada, M., Phys. Rev. B 53, p. 7917 (1996)10.1103/PhysRevB.53.7917Google Scholar
4 Kato, K., Uda, T., Terakura, K., Phys. Rev. Lett. 80, p. 2000 (1998)10.1103/PhysRevLett.80.2000Google Scholar
5 Engel, T., Surf. Sci. Rep. 18, p. 91 (1993)10.1016/0167-5729(93)90016-IGoogle Scholar
6 Munkholm, A., Brennan, S., Comin, F., Ortega, L., Phys. Rev. Lett., 75, p. 4254 (1995)10.1103/PhysRevLett.75.4254Google Scholar
7 Ourmazd, A., Taylor, D.W., Rentschler, J.A., Bevk, J., Phys. Rev. Lett. 59, p.213 (1987)10.1103/PhysRevLett.59.213Google Scholar
8 Estève, A., Rouhani, M. Djafari, Estève, D., to be published in Microelectronics Reliability (1999)Google Scholar
9 Estève, A., Rouhani, M. Djafari, Estève, D., to be published in Journal of Non-Crystalline Solids (1999)Google Scholar
10 Fujita, S., Watnabe, H., Maruno, S., Ichikawa, M., Kamura, T., Appl. Phys. Lett. 71, p. 885 (1997)10.1063/1.120567Google Scholar
11 Enta, Y., Miyanishi, Y., Irimachi, H., Niwano, M., Suemitsu, M., Miyamoto, N., Shigemasa, E., Kato, H., J. Vac. Sci. Technol. A 16, p. 1716 (1998)10.1116/1.581290Google Scholar