Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-27T12:19:35.295Z Has data issue: false hasContentIssue false

Atomic Level Characterization of Neutron Irradiated Pressure Vessel Steels

Published online by Cambridge University Press:  21 March 2011

M. K. Miller
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6136
P. Pareige
Affiliation:
Groupe de Physique des Matériaux, Equipe de Recherche Technologique, UMR CNRS 6634, Faculté des Sciences et INSA de Rouen, 76821 Mont Saint Aignan Cedex, France
Get access

Abstract

Atom probe tomography provides one of the most effective tools to characterize the solute distribution and precipitation that occurs in pressure vessel steels and associated model alloys during irradiation. The three-dimensional atom probe is able to experimentally determine the elemental identities of the atoms and their spatial coordinates with near atomic resolution so that their distribution within small volumes of the specimen can be reconstructed and analyzed. This technique together with conventional atom probe field ion microscopy has been applied to many different types of pressure vessel steels and model alloys and has revealed and characterized several different nanostructural transformations. These radiation induced or enhanced processes lead to the formation of copper-nickel-manganese-silicon-enriched precipitates, and solute segregation to dislocations, dislocation loops, nanovoids and boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miller, M.K. and Smith, G. D. W., Atom Probe Microanalysis, Principles and Applications to Materials Problems, 1989, Materials Research Society, Pittsburgh PA.Google Scholar
2. Miller, M. K., Cerezo, A., Hetherington, M. G. and Smith, G. D. W., Atom Probe Field Ion Microscopy, 1996,Oxford University Press, Oxford, UK.Google Scholar
3. Miller, M. K., Atom Probe Tomography, 2000, Kluwer Academic/Plenum Publishers, New York, NY.Google Scholar
4. Miller, M. K., J. Microscopy, 192, 1 (1997).Google Scholar
5. Miller, M. K., Hetherington, M. G. and Burke, M. G., Metall. Trans., 20A, 2651 (1989).Google Scholar
6. Miller, M. K., Pareige, P. and Burke, M. G., Materials Characterization, 44, 235 (1999).Google Scholar
7. Pareige, P., Etude a La Sonde Atomique de L'Evolution Microstructurale Sous Irradiation D'Alliages Ferritiques FeCu et D'Aciers de Cuve de Reacteurs Nucleaires, Ph. D. Thesis, University of Rouen, Rouen, France, 1994.Google Scholar
8. Miller, M. K., Babu, S. S., Sokolov, M. A., Nanstad, R. K. and Iskander, S. K., Mater. Sci. Eng. A, in press.Google Scholar
9. Pareige, P., Stoller, R. E., Russell, K. F. and Miller, M. K., J. Nucl. Mater., 249, 165 (1997).Google Scholar
10. Miller, M. K. and Russell, K. F., J. Nucl. Mater., 250, 223 (1997).Google Scholar
11. Auger, P., Pareige, P., Welzel, S., and Duysen, J.C. Van, J. Nucl. Mater., 280, 331 (2000).Google Scholar
12. Miller, M. K., Russell, K. F., Kocik, J. and Keilova, E., J. Nucl. Mater., 282, 83 (2000).Google Scholar
13. Miller, M. K., Russell, K. F. and Pareige, P., these proceedings.Google Scholar
14. Pareige, P., Russell, K. F., Stoller, R. E. and Miller, M. K., J. Nucl. Mater., 250, 176 (1997).Google Scholar
15. Pareige, P. and Miller, M. K., Appl. Surf. Sci., 94/95, 370 (1996).Google Scholar
16. Pareige, P., Duysen, J. C. Van, Auger, P., Appl. Surf. Sci., 67, 342 (1993).Google Scholar
17. Auger, P., Pareige, P., Akamatsu, M. and Duysen, J.C. Van, J. Nucl. Mater., 211, 194 (1994).Google Scholar
18. Hyde, J. M., Ellis, D., English, C. A. and Williams, T. J., “Microstructural evolution in high nickel submerged arc weld,” 20th Int. Conf. Effects of Radiation on Materials, ASTM STP 1405, eds. Rosinski, S. T., Grossbeck, M.L., Allen, T. R. and Kumar, A. S., American Society for Testing and Materials, West Conshohocken, PA, 2002.Google Scholar
19. Hyde, J. M. and English, C. A., these proceedings.Google Scholar
20. Miller, M. K. and Russell, K. F., Appl. Surf. Sci., 94/95, 378 (1996).Google Scholar
21. McLean, D., Grain Boundaries in Metals, 1957, Oxford University Press, London, p. 116.Google Scholar