Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T05:18:39.452Z Has data issue: false hasContentIssue false

Atomic Hydrogen Assisted Growth of Si-Ge Heterostructures on (001) Si

Published online by Cambridge University Press:  03 September 2012

J.-M. Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, K1A 0R6, CANADA
D.J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, K1A 0R6, CANADA
S.J. Rolfe
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, K1A 0R6, CANADA
R.W.G. Syme
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, K1A 0R6, CANADA
H.J. Labbé
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, K1A 0R6, CANADA
Get access

Abstract

A study of the interface chemical and physical abruptness of Si-Ge heterostructures grown on (001) Si by molecular beam epitaxy under atomic hydrogen exposure is reported. Atomic hydrogen (AH) was produced by the dissociation of molecular hydrogen interacting with a hot tungsten filament. Secondary-ion mass spectroscopy (SIMS) of structures made of alternating Ge (0.5 nm)/Si (40 nm) layers demonstrated that AH can effectively suppress Ge surface segregation. The segregation length was reduced from 1.5 nm to about 0.5 nm in films grown at a hydrogen partial pressure of −5 × 10-3 Pa and cell temperature of 2140 °C with an estimated cracking efficiency of ~5%. However, the high hydrogen background pressure had detrimental effects on the physical sharpness of the interfaces. This was evidenced by comparing the interface quality of Si/Ge atomic layer superlattices grown with and without AH exposure. X-ray reflectivity and Raman spectroscopy revealed a significant increase of the interface roughness, although the periodic character and the good crystallinity of the structures were preserved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sturm, J.C. in Properties of Strained and Relaxed Germanium, edited by Kasper, E., INSPEC, The Institution of Electrical Engineers, 1995, pp 193204.Google Scholar
2 Soref, R., J. Vac. Sci. Technol. A14, 913 (1996).Google Scholar
3 Jorke, H. in Properties of Strained and Relaxed Germanium, edited by Kasper, E., INSPEC, The Institution of Electrical Engineers, 1995, pp 180189.Google Scholar
4 Copel, M. and Tromp, R.M., Appl. Phys. Lett. 58, 2468 (1991).Google Scholar
5 Fujinaga, K., Jpn. J. Appl. Phys. 34, 4004 (1995).Google Scholar
5 Ohtani, N. N., Mokler, S.M., Xie, H.H., Zhang, J., and Joyce, B.A., Int. Conf. Solid State Devices and Materials, Chiba, 1994, pp 249251.Google Scholar
6 Sakai, A. and Tatsumi, T., Appl. Phys. Lett. 64, 52 (1994).Google Scholar
7 Ohta, G., Fukatsu, S., Ebuchi, Y., Hattori, T., Usami, N. and Shiraki, Y., Appl. Phys. Lett. 65, 2975 (1994).Google Scholar
8 Nakagawa, K., Nishida, A., Kimura, Y. and Shimada, T., Jpn. J. Appl. Phys. 33, L1331 (1995).Google Scholar
9 Adams, P.D., Yasilove, S.M., Eaglesham, D.J., Appl. Phys. Lett. 63, 3571 (1993).Google Scholar
10 Baribeau, J.-M., Jackman, T.E., Houghton, D.C., Maigné, P., Denhoff, M.W., J. Appl. Phys. 63, 5738 (1988).Google Scholar
11 Baribeau, J.-M., Lockwood, D.J., Dharma-wardana, M.W.C., Rowell, N.L. and McCaffrey, J.P., Thin Solid Films 183, 17 (1989).Google Scholar
12 Baribeau, J.-M., Lockwood, D.J. and Syme, R.W.G., J. Appl. Phys. 80, 1450 (1996).Google Scholar
13 Parratt, L.G., Phys. Rev. 95, 359 (1954).Google Scholar
14 Croce, P. and Névot, L., Rev. Phys. Appl. 11, 113 (1976).Google Scholar
15 Calculations performed using GIXS simulation package from BEDE Scientific.Google Scholar
16 Lockwood, D.J., Dharma-wardana, M.W.C., Baribeau, J.-M. and Houghton, D.C., Phys. Rev. B 35, 2243 (1987).Google Scholar
17 Sakamoto, K., Matsuhata, H., Miki, K. and Sakamoto, T., J. Cryst. Growth 157, 295(1995).Google Scholar
18 Wicks, G.W., Rueckwald, E.R. and Koch, M.W., J. Vac. Sci. Technol. B 14, 2184(1996).Google Scholar
19 Sinha, S.K., Sirota, E.B., Garoff, S. S. and Stanley, H.B., Phys. Rev. B 38, 2297 (1988) .Google Scholar
20 Dharma-wardana, M.W.C., Aers, G.C., Lockwood, D.J. and Baribeau, J.-M., Phys. Rev B 41, 5319 (1990).Google Scholar
21 Colvard, C., Gant, T.A., Klein, M.V., Merlin, R., Fischer, R., Morkoç, H. and Gossard, A.C., Phys. Rev. B 31, 2080(1985).Google Scholar