Skip to main content Accessibility help

Atomic Hydrogen Assisted Growth of Si-Ge Heterostructures on (001) Si

  • J.-M. Baribeau (a1), D.J. Lockwood (a1), S.J. Rolfe (a1), R.W.G. Syme (a1) and H.J. Labbé (a1)...


A study of the interface chemical and physical abruptness of Si-Ge heterostructures grown on (001) Si by molecular beam epitaxy under atomic hydrogen exposure is reported. Atomic hydrogen (AH) was produced by the dissociation of molecular hydrogen interacting with a hot tungsten filament. Secondary-ion mass spectroscopy (SIMS) of structures made of alternating Ge (0.5 nm)/Si (40 nm) layers demonstrated that AH can effectively suppress Ge surface segregation. The segregation length was reduced from 1.5 nm to about 0.5 nm in films grown at a hydrogen partial pressure of −5 × 10-3 Pa and cell temperature of 2140 °C with an estimated cracking efficiency of ~5%. However, the high hydrogen background pressure had detrimental effects on the physical sharpness of the interfaces. This was evidenced by comparing the interface quality of Si/Ge atomic layer superlattices grown with and without AH exposure. X-ray reflectivity and Raman spectroscopy revealed a significant increase of the interface roughness, although the periodic character and the good crystallinity of the structures were preserved.



Hide All
1 Sturm, J.C. in Properties of Strained and Relaxed Germanium, edited by Kasper, E., INSPEC, The Institution of Electrical Engineers, 1995, pp 193204.
2 Soref, R., J. Vac. Sci. Technol. A14, 913 (1996).
3 Jorke, H. in Properties of Strained and Relaxed Germanium, edited by Kasper, E., INSPEC, The Institution of Electrical Engineers, 1995, pp 180189.
4 Copel, M. and Tromp, R.M., Appl. Phys. Lett. 58, 2468 (1991).
5 Fujinaga, K., Jpn. J. Appl. Phys. 34, 4004 (1995).
5 Ohtani, N. N., Mokler, S.M., Xie, H.H., Zhang, J., and Joyce, B.A., Int. Conf. Solid State Devices and Materials, Chiba, 1994, pp 249251.
6 Sakai, A. and Tatsumi, T., Appl. Phys. Lett. 64, 52 (1994).
7 Ohta, G., Fukatsu, S., Ebuchi, Y., Hattori, T., Usami, N. and Shiraki, Y., Appl. Phys. Lett. 65, 2975 (1994).
8 Nakagawa, K., Nishida, A., Kimura, Y. and Shimada, T., Jpn. J. Appl. Phys. 33, L1331 (1995).
9 Adams, P.D., Yasilove, S.M., Eaglesham, D.J., Appl. Phys. Lett. 63, 3571 (1993).
10 Baribeau, J.-M., Jackman, T.E., Houghton, D.C., Maigné, P., Denhoff, M.W., J. Appl. Phys. 63, 5738 (1988).
11 Baribeau, J.-M., Lockwood, D.J., Dharma-wardana, M.W.C., Rowell, N.L. and McCaffrey, J.P., Thin Solid Films 183, 17 (1989).
12 Baribeau, J.-M., Lockwood, D.J. and Syme, R.W.G., J. Appl. Phys. 80, 1450 (1996).
13 Parratt, L.G., Phys. Rev. 95, 359 (1954).
14 Croce, P. and Névot, L., Rev. Phys. Appl. 11, 113 (1976).
15 Calculations performed using GIXS simulation package from BEDE Scientific.
16 Lockwood, D.J., Dharma-wardana, M.W.C., Baribeau, J.-M. and Houghton, D.C., Phys. Rev. B 35, 2243 (1987).
17 Sakamoto, K., Matsuhata, H., Miki, K. and Sakamoto, T., J. Cryst. Growth 157, 295(1995).
18 Wicks, G.W., Rueckwald, E.R. and Koch, M.W., J. Vac. Sci. Technol. B 14, 2184(1996).
19 Sinha, S.K., Sirota, E.B., Garoff, S. S. and Stanley, H.B., Phys. Rev. B 38, 2297 (1988) .
20 Dharma-wardana, M.W.C., Aers, G.C., Lockwood, D.J. and Baribeau, J.-M., Phys. Rev B 41, 5319 (1990).
21 Colvard, C., Gant, T.A., Klein, M.V., Merlin, R., Fischer, R., Morkoç, H. and Gossard, A.C., Phys. Rev. B 31, 2080(1985).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed