Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-25T20:56:05.532Z Has data issue: false hasContentIssue false

Atomic Defects in Transition Metal Carbides and SiC Studied by Positron Annihilation

Published online by Cambridge University Press:  22 February 2011

A. A. Rempel
Affiliation:
Institute of Solid State Chemistry, Russian Academy of Sciences, Pervomaiskaya 91, GSP-145 Ekaterinburg 620219, Russia
H. -E. Schaefer
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwaldring 57/VI, 70550 Stuttgart, Germany
M. Forster
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwaldring 57/VI, 70550 Stuttgart, Germany
A.I. Girka
Affiliation:
Moscow Engineering Physics Institute, Kashirskoe Shosse 31, Moscow 115409, Russia
Get access

Abstract

Nonstoichiometric defects in carbides of the Group IV and V transition metals and radiation-induced atomic defects in SiC were studied by positron lifetime measurements before and after low-temperature (80 K) electron irradiation and subsequent thermal annealing up to 1900 K. Agglomeration of radiation-induced atomic defects which strongly depends on the energy of the irradiation electrons and subsequent decay of the agglomerates in SiC is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rempel, A.A., Forster, M., and Schaefer, H.-E., Soy. Phys. Dokl. 37, 484 (1992).Google Scholar
[2] Rempel, A.A., Forster, M., and Schaefer, H.-E., J. Phys.: Condens. Matter. 5, 261 (1993).Google Scholar
[3] Girka, A.I., Kuleshin, V.A., Mokrushin, A.D., Mokhov, E.N., Svirida, S.V., and Shishkin, A.V., Sov.Phys.Semicond. 23, 1337 (1989).Google Scholar
[4] Gusev, A.I. and Rempel, A.A., Structural Phase Transition in Nonstoichiometric Compounds. (Nauka, Moscow, 1988), 308 p. (in Russian).Google Scholar
[5] Rempel, A.A., Effects of Ordering in Nonstoichiometric Interstitial Compounds. (Nauka, Ekaterinburg, 1992), 286 p. (in Russian).Google Scholar
[6] Gusev, A.I. and Rempel, A.A., Phys. Status solidi a 135, 15 (1993).Google Scholar
[7] Forster, M., Claudy, W., Hermes, H., Koch, M., Maier, K., Major, J., Stoll, H., Schaefer, H.-E., Materials Science Forum 105–110, 1005 (1992).Google Scholar
[8] Veinger, A.I., Ilin, V.A., Tairov, Y.M., Tsevetkov, V.F., Sov.Phys.Semicond. 13, 1385 (1979).Google Scholar
[9] Schaefer, H.-E., Phys. Status Solidi a 102, 47 (1987).Google Scholar
[10] Wfirschum, R., Bauer, W., Maier, K., Seeger, A., and Schafer, H.-E., J. Phys.: Condens. Matter. 1, SA33 (1989).Google Scholar
[11] Kirkegaard, P., Eldrup, M., Mogensen, O.E., and Pedersen, N.J., Comp. Phys. Commun. 23, 307 (1981).Google Scholar
[12] Bauer, W., Briggmann, J., Carstanjen, H.-D., Connell, S., Decker, W., Diehl, J., Maier, K., Major, J., Schaefer, H.-E., Seeger, A., Stoll, H., and Widmann, E., Nucl.Inst.Meth.Phys.Res. B 50, 300 (1990).Google Scholar
[13] Hood, G.M., Eldrup, M., and Pedersen, N.J., in Proc. 5th Int.Conf.Positron Annihilation, edited by Hasiguti, R.R. and Fujiwara, K. (Jap.Inst.Met., Sendai, 1979) p. 751.Google Scholar
[14] Gusev, A.I. and Rempel, A.A., Phys. Status Solidi a 84, 527 (1984).Google Scholar
[15] Brauer, G., Sob, M., and Puska, M.J., Materials Science Forum 105–110, 611(1992).Google Scholar
[16] Puska, M.J., Sob, M., Brauer, G., and Korhonen, T., to be published.Google Scholar
[17] Morillo, J., Novion, C.H. de, and Dural, J., Radiation Effects 55, 67 (1981).Google Scholar
[18] Gosset, D., Morillo, J., Alison, C., and Novion, C.H. de, Radiation Effects and Defects in Solids 118, 207 (1991).Google Scholar
[19] Inui, H., Mori, H., and Fujita, H., Phil. Mag. B 61, 107 (1990).Google Scholar
[20] Pensl, G. and Helbig, R., Advances in solid state physics 30, 133 (1990).Google Scholar