Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-25T18:56:52.111Z Has data issue: false hasContentIssue false

Atom Specific Surface Magnetometry with Linear Magnetic Dichroism in Directional Photoemission

Published online by Cambridge University Press:  15 February 2011

Giorgio Rossi
Affiliation:
Laboratoriurn für Festkörperphysik, ETH-Zürich, CH-8093 Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, CNRS, CEA, MESR F-94305 Orsay
Fausto Sirotti
Affiliation:
Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, CNRS, CEA, MESR F-94305 Orsay
Giancarlo Panaccione
Affiliation:
Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, CNRS, CEA, MESR F-94305 Orsay
Get access

Abstract

A practical atom specific surface magnetometry can be based on the measure of magnetic dichroism in the angular distribution of core photoelectrons using linearly polarized synchrotron radiation. The magnetic dichroism effect on the photoemission intensity of 3p core levels of the ferromagnetic transition elements is as large as 46% in the case of Fe(100). The most efficient scheme for measuring the magnetic dichroism in photoemission requires two mirror experiments in chiral geometry, i.e. only two times more experiments than standard core level photoemission for surface chemical analysis. We describe the dichroism magnetometry and show examples for Fe, Co, Ni and Cr surfaces and interfaces, including the measurement of the temperature dependence of the Fe(100) surface magnetization and of the effect of S-segregation on the surface magnetic moment of iron.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Siegmann, H.C.; J. Phys.: Conden. Matter 4, 8395 (1992) and references quoted thereinGoogle Scholar
2 Landolt, M., in Polarized Electrons in Surface Physics, ed. by Feder, R., World Scientific, Singapore, 1985; R. Allenspach, D. Mauri, M. Taborelli, and M. Landolt, Phys. Rev. B35, 4801 (1987)Google Scholar
3 Carbone, C., and Kisker, E.; Solid State Commun. 65, 1107 (1988)Google Scholar
4 Kisker, E., in Polarized Electrons in Surface Physics, ed. by Feder, R., World Scientific, Singapore, 1985 Google Scholar
5 Roth, Ch., Hillebrecht, F.U., Rose, H., and Kisker, E., Phys. Rev. Lett. 70, 3479 (1993)Google Scholar
6 Roth, Ch., Rose, H., Hillebrecht, F.U., and Kisker, E., Solid State Commun. 86, 647 (1993)Google Scholar
7 Sirotti, F. and Rossi, G., Phys. Rev. B49, 15682 (1994)Google Scholar
8 Rossi, G., Sirotti, F., Cherepkov, N.A., Farnoux, F. Combet, and Panaccione, G., Solid State Commun. 90, 557 (1994)Google Scholar
9 Venus, D.; Phys. Rev. B48, 6144 (1993), ibid. 49, 8821 (1994))Google Scholar
10 Laan, G. van der; Phys. Rev. B51, 240 (1995)Google Scholar
11 Rossi, G., Sirotti, F. and Panaccione, G.; in Core Level Spectroscopies For Magnetic Phenomena: Theory and Experiment ed. by Bagus, P.S., Pacchioni, G., and Parmigiuani, F., Plenum ASI-NATO series 1995.Google Scholar
12 Cherepkov, N.A., Phys. Rev. B50, 13813 (1994)Google Scholar
13 Tamura, E., Waddill, G.D., Tobin, J.G., and Sterne, P.A.; Phys. Rev. Lett. 73, 1533 (1994)Google Scholar
14 Laan, G. van der, Hoyland, M.A., Surman, M., Flipse, C.F.J., and Thole, B.T., Phys. Rev. Lett 69, 3827 (1993)Google Scholar
15 Unguris, J., Celotta, R.J., and Pierce, D., Phys. Rev. Lett. 69, 1125 (1992)Google Scholar
16 Sirotti, F., Panaccione, G., and Rossi, G., to be published.Google Scholar
17 Mathon, J. and Ahmad, S.B., Phys. Rev. B37, 660 (1988).Google Scholar
18 Mauri, D., Scholl, D., Siegmann, H.C., and Kay, E.; Phys. Rev. Lett. 61, 758 (1988); D. Scholl. M.Donath, D. Mauri, E. Kay, J. Mathon, R.B. Muniz, H.C. Siegmann; Phys. Rev.B43, 13309 (1991)Google Scholar
19 Binder, K., in Phase Transitions and Critical Phenomena vol 8, ed Domb, C. and Lebowitz, J. (New York, Academic)Google Scholar
20 Taborelli, M., Paul, O., Zuger, O., and Landolt, M.; Journal de Physique 49, C81659 (1988).Google Scholar
21 Alvarado, S.F., Campagna, M., and Hopster, H., Phys. Rev. Lett. 48, 51 (1982)Google Scholar
22 Sirotti, F., Santis, M. De, and Rossi, G., Phys. Rev. B48, 8299 (1993)Google Scholar
23 Legg, K.O., Jona, F., Jepsen, D.W., and Marcus, P.M.; Surf. Sci. 66, 25 (1977).Google Scholar
24 Chubb, S.R., and Pickett, W.E.; Phys. Rev. B38, 10227 (1988).Google Scholar
25 Baumgarten, L., Schneider, C.M., Petersen, H., Schafers, F., and Kirschner, J.; Phys. Rev. Letters 65, 492 (1990)Google Scholar
26 Ebert, H., Baumgarten, L., Schneider, C.M., and Kirschner, J., Phys. Rev.B 44, 4406 (1991)Google Scholar