Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-28T19:50:24.405Z Has data issue: false hasContentIssue false

Assembly of α-Hemolysin: a Proteinaceous Pore with Potential Applications in Materials Synthesis

Published online by Cambridge University Press:  15 February 2011

Hagan Bayley
Affiliation:
Worcester Foundation for Experimental Biology. 222 Maple Avenue, Shrewsbury, MA 01545
Musti Krishnasastry
Affiliation:
Worcester Foundation for Experimental Biology. 222 Maple Avenue, Shrewsbury, MA 01545
Barbara Walker
Affiliation:
Worcester Foundation for Experimental Biology. 222 Maple Avenue, Shrewsbury, MA 01545
John Kasianowicz
Affiliation:
National Institute of Standards and Technology, Bldg. 222-A353, Galthersburg, MD 20899
Get access

Abstract

α-Hemolysin (αHL) is secreted by the bacterium Staphylococcus aureus as a watersoluble polypeptide of 293 amino acid residues. When presented with lipid bilayers or the detergent deoxycholate (DOC), aHL assembles into hexameric cylindrical pores that each contain one channel ∼ 1 to 2 nm in Internal diameter. A long-term goal of this laboratory is to use wild-type or re-engineered αHL pores as components of nanoscale materials: for example, to confer novel permeability properties upon thin films. The implementation of this concept would be facilitated by a better understanding of the mechanism by which the pore assembles. Reviewed here are findings that have given us insight Into the assembly mechanism, including the results of recent mutagenesis experiments. A critical summary is given of knowledge about the conformation of the monomer In solution, the hexamerIc pore and two proposed intermediates in assembly (a membrane-bound monomer and an oligomeric pore precursor). Future directions are outlined Including the prospects of obtaining three-dimensional structural data on the αHL pore or its precursors, methods for obtaining better monolayer sheets and new experiments on the topography of the pore and its precursors. The role of membrane receptors in facilitating the assembly of αHL is also discussed. Finally, it is demonstrated that despite our rather rudimentary knowledge of the assembly process, the Information gained so far still allows the design of mutant (αHL polypeptides with useful properties. For example, αHL mutants whose pore-forming ability is activated by proteases have been made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1..Bayley, H., MRS Symp. Proc. 218. 69 (1991).Google Scholar
2. Krishnasastry, M.. Walker, B., Zorn, L., Kaslanowicz, J. and Bayley, H., In: Synthetic microstructures in biological research, Schnur, J., , J. and Peckerar, M., eds. New York: Plenum, 1992, pp. 4151.Google Scholar
3. Gray, G.S. and Kehoe, M., Infect. Immun. 46,615 (1984).Google Scholar
4. Thelestam, M. and Blomqvist, L., Toxicon 26, 51 (1988).Google Scholar
5. Bhakdi, S. and Tranum-Jensen, J., Microbiol. Rev. 55, 733 (1991).Google Scholar
6. Tobkes, N., Wallace, B.A. and Bayley, H., Biochemistry 24, 1915 (1985).Google Scholar
7. hakdi, S. B. and Tranum-Jensen, J., Trends Blochem. Sci. 8., 134 (1983).Google Scholar
8. Ikigai, H. and Nakae, T., J. Blol. Chem. 262,2150 (1987).Google Scholar
9. lkigai, H. and Nakae, T., J. Biol. Chem. 262,2156 (1987).Google Scholar
10. Menestrina, G., J. Membrane Biol. 90, 177 (1986).Google Scholar
11. Füssle, R., Bhakdl., S. Sziegoleit, A., Tranum-Jensen, J., Kranz, T. and Wellenslek., H.-J. J. Cell Blol. 91, 83 (1981).Google Scholar
12. Bhakdl, S., Füssle, R. and Tranum-Jensen, J., Proc. NatI. Acad. Sci. USA 78, 5475 (1981).Google Scholar
13. Bernhelmer, A.W., Kim, K.S., Remsen, C.C., Antanavage, J. and Watson, S.W., Infect. Immun. 6,636 (1972).Google Scholar
14. Olofsson, A., Kavéus, U., Hacksell, I., Thelestam, M. and Hebert, H., J. Mol. Biol. 214, 299 (1990).Google Scholar
15. Sundaram, M., Chalmers, S.A., Hopkins, P.F. and Gossard, A.C., Science 254, 1326 (1991).Google Scholar
16. Jewell, J.L., Harbison, J.P. and Scherer, A., Sci. Am. 265 (5), 86 (1991).Google Scholar
17. Wise, K.D. and Najafi, K., Science 254,1335 (1991).Google Scholar
18. Whitesides, G.M., Mathias, J.P. and Seto, C.T., Science 254, 1312 (1991).Google Scholar
19. Philp, D. and Stoddart, J.F., SynIett 445 (1991).Google Scholar
20. Shepherd, G.M., Cell 67, 845 (1991).Google Scholar
21. Bayley, H., MRS Symrp. Proc. 255, 269 (1992).Google Scholar
22. Cramer, W.A. and Knaff, D.B.. Energy transduction in biological membranes, New York:Sprlnger-Verlag, 1989.Google Scholar
23. Huxley, H.E., J. Biol. Chem. 265,8347 (1990).Google Scholar
24. Douglas, K.. Clark, N.A. and Rothschild, K.J., Appl. Phys. Lett. 48,676 (1986).Google Scholar
25. Uzgiris, E.E. and Kornberg, R.D., Nature 301. 125 (1983).Google Scholar
26. Lerner, R.A., Benkovic, S.J. and Schuhlz, P.G., Science 252, 659 (1991).Google Scholar
27. Walker, B.J., Krishnasastry, M., Zorn, L., Kasianowicz, J.J. and Bayley, H., J. Blol. Chem. 267,10902 (1992).Google Scholar
28. Walker, B.J., Krishnasastry, M., Zorn, L. and Bayley, H., J. Blol. Chem. 267, 21782 (1992).Google Scholar
29. Walker, B.J., Krishnasastry, M. and Bayley, H., J. Biol. Chem. 268, In press (1993).Google Scholar
30. Walker, B.J. and Bayley, H., submitted (1993).Google Scholar
31. Ikigai, H. and Nakae, T., Blochem. Blophys. Res. Commun. 130, 175 (1985).Google Scholar
32. Arbuthnott, J.P., Freer, J.H. and Bernheimer, A.W., J. Bacteriol. 94, 1170 (1967).Google Scholar
33. Olofsson, A., Kavéus, U., Thelestam, M. and Hebert, H., J. Uitrastruct. Mol. Struct. Res. 100, 194 (1988).Google Scholar
34. Olofsson, A., Kavéus., U. Thelestam, M. and Hebert, H., J. Struct. Biol. 108, 238 (1992).Google Scholar
35. Wilmsen, H.U., Leonard, K.R., Tichelaar, W., Buckley, J.T. and Pattus, F., EMBO J. 11,2457 (1992).Google Scholar
36. Cowan, S.W., Schirmer, T., Rummel, G., Stelert, M., Ghosh, R., Pauptit, R.A., Jansonlus, J.N. and Rosenbusch, J.P., Nature 358, 727 (1992).Google Scholar
37. Yellen, G., Jurman, M.E., Abramson, T. and MacKinnon, R., Science 251,939 (1991).Google Scholar
38. Akabas, M.H., Stauffer, D.A., Xu, M. and Karlin, A., Science 258,307 (1992).Google Scholar
39. Merrill, A.R. and Cramer, W.A., Biochemistry 29, 8529 (1990).Google Scholar
40. Menestrina, G., Belmonte, G., Parisi, V. and Morante, S., FEMS Microblol. Immunol. 105, 19 (1992).Google Scholar
41. Peitsch, M.C. and Tschopp, J., Curr. Opinion Cell Biol. 3, 710 (1991).Google Scholar
42. Hebert, H., Olofsson, A., Thelestam, M. and Skriver, E., FEMS Microbial. Immunol. 105, 5 (1992).Google Scholar
43. Cassidy, P. and Harshman, S., Biochemistry 15, 2348 (1976).Google Scholar
44. Hildebrand, A., Pohl, M. and Bhakdl, S., J. Biol. Chem. 266, 17195 (1991).Google Scholar
45. Hardt, S.L., Biophysical Chem. 10, 239 (1979).Google Scholar
46. Forti, S. and Menestrina, G., Eur. J. Biochem. 181. 767 (1989).Google Scholar
47. Sturtevant, J.M., Ann. Rev. Phys. Chem. 38,463 (1987).Google Scholar
48. Popot, J.-L. and Engelman, D.M.. Biochemistry 29,4031 (1990).Google Scholar
49. Ikigai, H. and Nakae, T., FEMS Microbial. Left. 24, 319 (1984).Google Scholar
50. Belmonte, G., Cescatti, L., Ferrari, B., Nicolussi, T., Ropele, M. and Menestrina, G., Eur. Biophys. J. 14.349 (1987).Google Scholar