Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T02:06:25.191Z Has data issue: false hasContentIssue false

Arsenic Redistribution and Outdiffusion in Implanted Czochralski-Grown P-Type Silicon During Rapid Thermal Annealing

Published online by Cambridge University Press:  26 February 2011

G. Chaussemy
Affiliation:
Laboratoire de physique de la Matière, INSA de Lyon.20 Av.A.Einstein, F69621 Villeurbanne Cedex, France
B. Canut
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard Lyon I, F69622 Villeurbanne Cedex, France.
S. N. Kumar
Affiliation:
Laboratoire de physique de la Matière, INSA de Lyon.20 Av.A.Einstein, F69621 Villeurbanne Cedex, France
D. Barbier
Affiliation:
Laboratoire de physique de la Matière, INSA de Lyon.20 Av.A.Einstein, F69621 Villeurbanne Cedex, France
A. Laugier
Affiliation:
Laboratoire de physique de la Matière, INSA de Lyon.20 Av.A.Einstein, F69621 Villeurbanne Cedex, France
Get access

Abstract

The effects of the implantation parameters (dose and energy) on the Arsenic redistribution and outdiffusion rate in (100) p-type silicon, after 7–12 s Rapid Thermal Annealing in the 1100–1200°C temperature range have been investigated. Four doses ranging from 2×1014 to l×1016 cm−2, and As+ energies between 70 and 170 keV, have been studied. The experimental diffusion profiles obtained from the SIMS measurements, in complement with the RBS results, were modelled using the one dimensional Fick's equation with semi-infinite boundary conditions, using a concentration and temperature dependent diffusion coefficient D(C, T). The As diffusivity was classically attributed to As+V0, As+V, and As+V pairs with the related diffusion coefficients taken from the literature. A relatively good description of the As redistribution was obtained without introducing any transient or SPE effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seidel, T.E., Pai, C.S., Lischner, D.J., Maher, D.M., Knoell, R.V., Williams, J.S., Penumalli, B.R. and Jacobson, D.C. in Energy Beam-Solid Interactions and Transient Termal Processing, edited by Biegelsen, D.K., Rozgonyi, G.A. and Shank, C.V. (Mat. Res. Soc. Proc., Pittsburgh, 1985), p. 329.Google Scholar
2. Narayan, J. in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Fan, J.C.C. and Johnson, N.M. (North Holland, New York, 1984), p.335.Google Scholar
3. Hodgson, R.T., Deline, V., Mader, S.M., Morehead, F.F. and Gelpey, J. in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Fan, J.C.C. and Johnson, N.M. (North Holland, New York, 1984), p. 253.Google Scholar
4. Sedgwick, T.O., Kalish, R., Mader, S.R. and Shatas, S.C. in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Fan, J.C.C. and Johnson, N.M. (North Holland, New York, 1984), p. 293.Google Scholar
5. Barbier, D., Remram, M., Joly, J.F. and Laugier, A., J.Appl.Phys.6–1 (1).p.156160 (1987).CrossRefGoogle Scholar
6. Fair, R.B. and Tsai, J.C.C., J.Electrochem.Soc.Solid-State Science and Technology, 124.n° 7, p. 1107 (1977).Google Scholar
7. Hoyt, J.L. and Gibbons, J.F. in Rapid Thermal Processing, edited by Sedgwick, T.O., Seidel, T.E., and Tsaur, B.Y., (Mater. Res. Soc. Proc., Pittsburgh, 1986), p. 15.Google Scholar