Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T14:55:31.668Z Has data issue: false hasContentIssue false

Array Based Carbon Black-Polymer Composite Vapor Detectors for Detection of DNT in Environments Containing Complex Analyte Mixtures

Published online by Cambridge University Press:  17 March 2011

Nathan S. Lewis
Affiliation:
Division of Chemistry and Chemical Engineering, Noyes Laboratory, 127-72 California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Thin films of carbon black-organic polymer composites have been deposited across two metallic leads, with sorption of vapors producing swelling-induced resistance changes of the detector films. To identify and classify vapors, arrays of such vapor sensing elements have been constructed in which each element of the array contains a different polymer as the insulating phase and a common conductor, carbon black, as the conducting phase. The differing gas-solid partition coefficients for the various polymers of the detector array produce a pattern of differential resistance changes that is used to classify vapors and vapor mixtures. The performance of this detector array system towards 2,4-dinitrotoluene, the predominant signature in the vapor phase above land mines, in the presence high concentrations of water or of acetone (as a selected volatile organic carbon vapor), has been evaluated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Doleman, B. J.; Lonergan, M. C.; Severin, E. J.; Vaid, T. P.; Lewis, N. S. Anal. Chem. 1998, 70, 4177.Google Scholar
(2) Severin, E. J.; Doleman, B. J.; Lewis, N.S. Anal. Chem.; 2000; 72; 658 Google Scholar
(3) Vaid, T. P.; Burl, M. C.; Lewis, N.S. Anal. Chem. 2001, 73, 321.Google Scholar
(4) Norman, R. H. Conductive Rubbers and Plastics; Elsevier: Amsterdam, 1970.Google Scholar
(5) Ford, C. J. In U.S. Patent 2, 691, 134, 1951.Google Scholar
(6) Newton, R. G. J. Rubber Res. 1946, 15, 35.Google Scholar
(7) Sands, A. G.; McDowell, M. V. Rubber Age, New York 1956, 80, 500.Google Scholar
(8) Boyd, J.; Bulgin, D. J. Text. Inst. Proc. 1957, 48, 66.Google Scholar
(9) Lundberg, B.; Sundqvist, B. J. Appl. Phys. 1986, 60, 1074.Google Scholar
(10) Ruschau, G. R.; Newnham, R. E.; Runt, J.; Smith, B. E. Sens. Actuators 1989, 20, 269.Google Scholar
(11) Talik, P.; Zabkowskawaclawek, M.; Waclawek, W. J. Mater. Sci. 1992, 27, 6807.Google Scholar
(12) George, V.; Jenkins, T. F.; Leggett, D. C.; Cragin, J. H.; Phelan, J. M.; Oxley, J. C.; Pennington, J. Proc. SPIE 1999, 3710, 258.Google Scholar
(13) Cummings, C., private communication.Google Scholar
(14) Patel, S. V.; Jenkins, M. W.; Hughes, R. C.; Yelton, W. G.; Ricco, A. J. Anal. Chem. 2000, 72, 1532.Google Scholar
(15) Park, J.; Groves, W. A.; Zellers, E. T. Anal. Chem; 1999, 71, 3877.Google Scholar