Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T11:21:57.287Z Has data issue: false hasContentIssue false

Are Gel-Derived Glasses Different from Ordinary Glasses?

Published online by Cambridge University Press:  28 February 2011

M. C. Weinberg*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
Get access

Abstract

A review is presented of some of the previously reported differences and similarities between comparable gel glasses (and gels) and ordinary glasses. In this regard, considerations are made with respect to such factors as structure, physical and thermal properties, and phase transformation behavior. A variety of silicate lass compositions are used for illustrative purposes. The discussion is roughly ivided into two sections; low and high temperature behavior. At low temperatures one anticipates that differences between gel and conventional glasses will exist, but such dissimilarities are not expected to persist to high temperatures. However, experimental evidence is presented which indicates the perpetuation of such differences to very high temperatures. A partial resolution for this anomalous behavior is offered.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mukherjee, S. P., Zarzycki, J., and Traverse, J. P., J. Mater. Sci. 11, 341(1976).CrossRefGoogle Scholar
2. Neilson, G. F. and Weinberg, M. C., in Materials Processing in the Reduced Gravity Environment in Space, edited by Rindone, Guy E. (Elsevier Science Publishers, New York, 1984), p.333.Google Scholar
3. Yoldas, B. E., J. Non-Crystalline Solids 63, 145 (1984).CrossRefGoogle Scholar
4. Weinberg, M. C. and Neilson, G. F., J. Mater. Sci. 13, 1206 (1978).CrossRefGoogle Scholar
5. Yoldas, B. E., J. Non-Crystalline Solids 51, 105 (1982).CrossRefGoogle Scholar
6. Weinberg, M. C. and Neilson, G. F., J. Amer. Ceram. Soc. 66, 132 (1983).CrossRefGoogle Scholar
7. Brinker, C. J., Roth, E. P., and Scherer, G. W., presented at the 1985 Annual Ceramic Society Meeting, Cincinnati, OH., May 1985 (unpublished).Google Scholar
8. Mackenzie, J. D., J. Non-Crystalline Solids 48, 1 (1982).CrossRefGoogle Scholar
9. Yamane, M., Aso, S., Okano, S., and Sakaino, T., J. Mater. Sci. 14, 607 (1979).CrossRefGoogle Scholar
10. Sakka, S. and Kamiya, K., J. Non-Crystalline Solids 42, 477 (1980).CrossRefGoogle Scholar
11. Dislich, H., Agnew. Chem. Int. Ed. 10, 363 (1971).CrossRefGoogle Scholar
12. Nogami, M. and Moriya, Y., J. Non-Crystalline Solids 48, 359 (1982).CrossRefGoogle Scholar
13. Brinker, C. J., Roth, E. P., Scherer, G. W., and Tallant, Dr. R., J. Non-Crystalline Solids, 71, 171 (1985).CrossRefGoogle Scholar
14. Scherer, G. W., Brinker, C. J., and Roth, E. Peter, J. Non-Crystalline Solids (in press).Google Scholar
15. Neilson, G. F., Weinberg, M. C., and Smith, G. L., J. Non-Crystalline Solids (in press).Google Scholar
16. Neilson, G. F. and Weinberg, M. C., J. Non-Crystalline Solids 63, 365 (1984).CrossRefGoogle Scholar
17. Ravaine, D., Traore, J., Klein, L. C., and Schwartz, I., in Better Ceramics Throuqh Chemistry, edited by Brinker, C. J., Clark, D. E., and Uhlrich, D. R. (Elsevier Science Publishers, New York, 1984), p.139.Google Scholar
18. Brinker, C. J., Drotning, W. D., and Scherer, G. W., in Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., and Uhlrich, D. R. (Elsevier Science Publishers, New York, 1984), p.25.Google Scholar
19. Weinberg, M. C. and Neilson, G. F., in Sol Gel Technology, edited by Klein, L. (Noyes Publications, New Jersey) (in press).Google Scholar
20. Rabinovich, E. M., J. Non-Crystalline Solids 71, 187 (1985).CrossRefGoogle Scholar
21. Yamane, M. and Kojima, T., J. Non-Crystalline Solids 44, 181(1981).CrossRefGoogle Scholar
22. Hayashi, T. and Saito, H., J. Mater. Sci. 15, 1971 (1980).CrossRefGoogle Scholar
23. Debolt, M. A., Eastel, A. J., Macedo, P. B., and Moynihan, C. T., J. Amer. Ceram. Soc. 59, 16 (1976).CrossRefGoogle Scholar
24. James, P. F., in Advances in Ceramics, Volume 4, edited by Simmons, J. H., Uhlmann, D. R., and Beall, G. H. (American Ceramic Society, Columbus, OH., 1982), p.1.Google Scholar
25. Kreidl, N.J. and Maklad, M. S., J. Amerc. Ceram. Soc. 52, 508 (1969).CrossRefGoogle Scholar
26. Scherer, G. W., in Relaxation in Glass and Composites, (John Wiley and Sons)(in press).Google Scholar
27. Decottignies, M., Phalippou, J., and Zarzycki, J., J. Mater. Sci 13, 2605 (1978).CrossRefGoogle Scholar
28. Bertoluzza, A., Fagnano, C., Morelli, M. A., Gottardi, V., and Guglielmi, M., J. Non-Crystalline Solids 48, 117 (1982).CrossRefGoogle Scholar
29. Stolen, R. H. and Walrafen, G. E., J. Chem. Phys. 64, 2623 (1976).CrossRefGoogle Scholar
30. Krol, D. M. and van Lierop, J. G., J. Non-Crystalline Solids 63, 131 (1984).CrossRefGoogle Scholar
31. Woignier, T., Phalippou, J., and Zarzycki, J., J. Non-Crystalline Solids 63, 117 (1984).CrossRefGoogle Scholar
32. Mukherjee, S. P. and Sharma, S. K., J. Non-Crystalline Solids 71, 317 (1985).CrossRefGoogle Scholar