Skip to main content Accessibility help
×
Home

Application of Wide Band Gap Semiconductors to Increase Photocurrent in a Protein Based Photovoltaic Device

  • Arash Takshi (a1), Houman Yaghoubi (a1), Daniel Jun (a2), Rafael Saer (a2), Ali Mahmoudzadeh (a3), John D. Madden (a3) and J. Thomas Beatty (a2)...

Abstract

Reaction centers (RCs) from natural photosynthetic cells are photoactive proteins, which generate electron-hole pairs in presence of light. In a new approach presented in this work, a solution of suspended RCs with mediators has been applied as the electrolyte to build electrochemical based photovoltaic (PV) devices. In this approach, the mediators transfer charges from the RCs to the electrodes (indirect charge transfer). Various metallic and wide bandgap semiconducting materials, including Carbon, Au, Indium Tin Oxide (ITO), SnO2, WO3, have been tested as the electrodes. Among all WO3, which is a semiconductor, have shown the largest photocurrent density with an amount of ∼5.1 μA/cm2. The results show that the material of the electrode can affect the rates of the reactions in the cell. Choosing an appropriate material for the electrode, the charge transfer from the mediators to the electrode would be rectified to achieve a large photocurrent.

Copyright

References

Hide All
1. Feher, G., Allen, J. P., Okamura, M. Y. and Rees, D. C., Nature 339 (6220), 111116 (1989).10.1038/339111a0
2. Blankenship, R. E., Molecular Mechanisms of Photosynthesis. (Blackwell Science, 2002).10.1002/9780470758472
3. Serdar, Niyazi. Sariciftci, and Sun, S.-S., Organic Photovoltaics: Mechanisms, Materials, and Devices. (CRC Press, 2005).
4. Katz, E., Journal of Electroanalytical Chemistry 365(1-2), 157164 (1994).10.1016/0022-0728(93)02975-N
5. Trammell, S. A., Spano, A., Price, R. and Lebedev, N., Biosensors and Bioelectronics 21(7), 10231028 (2006).10.1016/j.bios.2005.03.015
6. Takshi, A., Madden, J. D. W., Mahmoudzadeh, A., Saer, R. and Beatty, J. T., Energies 3(11), 17211727 (2010).10.3390/en3111721
7. Ramamurthy, V. and Schanze, K. S., Semiconductor photochemistry and photophysics. (CRC Press, New York).
8. Trammell, S. A., Wang, L., Zullo, J. M., Shashidhar, R. and Lebedev, N., Biosensors and Bioelectronics 19(12), 16491655 (2004).10.1016/j.bios.2003.12.034
9. Nango, M., presented at the Optical Fiber Communication and Optoelectronics Conference, 2007 Asia, 2007 (unpublished).
10. Abresch, E. C., Axelrod, H. L. A., Beatty, J. T., Johnson, J. A., Nechushtai, R. and Paddock, M. L., Photosynthesis Research 86(1), 6170 (2005).10.1007/s11120-005-5106-z
11. Goldsmith, J. O. and Boxer, S. G., Biochimica et Biophysica Acta (BBA) - Bioenergetics 1276(3), 171175 (1996).10.1016/0005-2728(96)00091-6
12. Bard, A. J. and Faulkner, L. R., Electrochemical Methods Fundamentals and Applications, 2 ed. (John Wiley, New York, 2001).
13. Rep, D. B. A., Morpurgo, A. F. and Klapwijk, T. M., Organic Electronics 4(4), 201207 (2003).10.1016/S1566-1199(03)00016-8
14. Markvart, T. and Castaner, L., Solar cells: materials, manufacture and operation (Elsevier, Oxford, 2006).
15. Shiraishi, M. and Ata, M., Carbon 39(12), 19131917 (2001).10.1016/S0008-6223(00)00322-5
16. Widenkvist, E., Quinlan, R. A., Holloway, B. C., Grennberg, H. and Jansson, U., Crystal Growth & Design 8(10), 37503753 (2008).10.1021/cg800383c
17. den Hollander, M.J., Magis, J. G., Fuchsenberger, P., Aartsma, T. J., Jones, M. R. and Frese, R. N., Langmuir 27(16), 1028210294 (2011).10.1021/la2013528

Keywords

Application of Wide Band Gap Semiconductors to Increase Photocurrent in a Protein Based Photovoltaic Device

  • Arash Takshi (a1), Houman Yaghoubi (a1), Daniel Jun (a2), Rafael Saer (a2), Ali Mahmoudzadeh (a3), John D. Madden (a3) and J. Thomas Beatty (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed