Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T06:42:32.063Z Has data issue: false hasContentIssue false

Application of Synchrotron X-Ray Fluorescence Microscopy to the Study of Multi-Metal Oxide Ceramics

Published online by Cambridge University Press:  10 February 2011

Dale L. Perry
Affiliation:
Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720, G. T. Seaborg Institute for Transactinium Science
Scott McHugo
Affiliation:
Lawrence Berkeley National Laboratory
Albert C. Thompson
Affiliation:
Lawrence Berkeley National Laboratory
Joseph C. Farmer
Affiliation:
Lawrence Livermore National Laboratory
Bart B. Ebbinghaus
Affiliation:
Lawrence Livermore National Laboratory
Richard Van Konynenburg
Affiliation:
Lawrence Livermore National Laboratory
William A. Brummond
Affiliation:
Lawrence Livermore National Laboratory
Guy Armentrout
Affiliation:
Lawrence Livermore National Laboratory
Thomas H. Gould
Affiliation:
Lawrence Livermore National Laboratory
Nancy Yang
Affiliation:
University of California, P. O. Box 808, Livermore, CA 94551, and Sandia National Laboratory, P. O. Box 696, Livermore, CA 94551.
Get access

Abstract

Synchrotron x-ray fluorescence microscopy has been used to study multi-metal oxide ceramics that have been designed to sequester radioactive actinide elements for long-term storage and disposal. X-ray fluorescent lines for the various elements have been used for lateral elemental mapping of the materials, and the heterogeneity of the samples is discussed with respect to the elements in the crystallographic phases that have previously been documented by other means of structural and chemical analyses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Closing the Circle on the Splitting of the Atom (U. S. Department of Energy, Office of Environmental Management, Washington, D. C., 1995).Google Scholar
2. Matzke, H., Surf. Interface Anal., 22, 472(1994).Google Scholar
3. Weber, W. J., Ewing, R. C., Angell, C. A., Arnold, G. W., Cormack, A. N., Delaye, J. M., Griscom, D. L., Hobbs, L. W., Navrotsky, A., Price, D. L., Stoneham, A. M., and Weinberg, M. C., J. Mater. Res., 12, 1946(1997).Google Scholar
4. Radioactive Waste Forms for the Future, Ewing, R. C., Editor, North-Holland Amsterdam, 1988).Google Scholar
5. Vance, E. R., Mater. Res. Soc. Bull., 19, 28(1994).Google Scholar
6. Solomah, A. G., Richardson, P. G., Mcllwain, A. K., J. Nucl. Mater., 148, 157(1987).Google Scholar
7. Cooper, J. A., Cousens, D. R., Hanna, J. A., Lewis, R. A., Myhra, S., Segall, R. L., Smart, R. S. C., Turner, P. S., and White, T. J., J. Am. Ceram. Soc., 69, 347(1986).Google Scholar
8. Thompson, A. C., Chapman, K. L., Ice, G. E., Sparks, C. J., Yun, W., Lai, B., Legnini, D., Vicarro, P. J., Rivers, M. L., Bilderback, D. H., and Thiel, D. J., Nucl. Instrumen. Meth. Phys. Res., Section A, 319, 320(1992).Google Scholar
9. Thompson, A. C., Chapman, K. L., and Underwood, J. H., Optics for High- Brightness Synchrotron Beamlines, (SPIE, Bellingham, Washington), 1740(1992).Google Scholar
10. Perry, D. L., Thompson, A. C., Russo, R. E., Mao, X. L., and Chapman, K. L., Appl. Spectrosc., 51, 1781(1997).Google Scholar