Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-17T11:19:35.635Z Has data issue: false hasContentIssue false

Application of Multilayer Structures to the Determination of Optical Constants in the X-Ray, Soft X-Ray and Extreme Ultra Violet Spectral Ranges

Published online by Cambridge University Press:  21 February 2011

Troy W. Barbee Jr.*
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Get access

Abstract

The dispersion of x-rays (XR), soft x-rays (SXR) and extreme ultraviolet (EUV) light by multilayer structures is dependent on the scattering and absorption cross-sections of the elements used to synthesize the multilayer. In this paper it will be shown that this dependence provides a means for the accurate experimental determination of the optical constants of the multilayer constituents. Two specific approaches will be presented and discussed. First, it will be shown that detailed analysis of the energy dependence of the reflectivity of a simple depth periodic multilayer allows the unfolding of the optical constants. Secondly a new optic structure, the multilayer diffraction grating, will be described and it will be demonstrated that such combined microstructure optics allow the scattering cross-sections of the multilayer constituents to be accurately determined over broad spectral ranges.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barbee, T.W. Jr., Opt. Eng. 25 989 (1986).Google Scholar
2. Spiller, E., in “Low Energy X-ray Diagnostics -1981,” Attwood, D.T. and Henke, B.L., eds., AIP Conf. Proc. No. 75, AIP, New York (1981) Pg. 124.Google Scholar
3. Barbee, l.W. Jr., in “Low Energy X-ray Diagnostics -1981,” Attwood, D.T. and Henke, B.L., eds., AIP Conf. Proc. No. 75, AIP, New York (1981) Pg. 131.Google Scholar
4. James, R.W., “The Optical Principles of the Diffraction of X-raysBell, London (1948).Google Scholar
5. Hoyt, J.J., Fontaine, D. de and Warburton, W.K., J. Appl. Cryst. 17, 344 (1984).CrossRefGoogle Scholar
6. Weed, J.W., in “X-ray and Vacuum Ultraviolet Interaction Data Bases, Calculations and Measurements,” Grande, N.K. De, Lee, P., Samson, J.A.R., Smith, D.Y., eds., Proc. SPIE No. 911, Pg. 166 (1988).Google Scholar
7. Musket, R.G., in “X-ray and Vacuum Ultraviolet Interaction Data Bases, Calculations and Measurements,” DelGrande, N.K., Lee, P., Samson, J.A.R., Smith, D.Y., eds., Proc. SPIE No. 911, Pg. 169 (1988).Google Scholar
8. Tirsell, K.G. and Grande, N.K. De, in “X-ray and Vacuum Ultraviolet Interaction Data Bases, Calculations and Measurements,” DelGrande, N.K., Lee, P., Samson, J.A.R., Smith, D.Y., eds., Proc. SPIE No. 911, Pg. 146 (1988).Google Scholar
9. Underwood, J.H. and Barbee, T.W. Jr., in “Low Energy X-ray Diagnostics 1981,” D.7. Attwood, and Henke, B.L., eds., AIP Conf. Proc. No. 75, AIP, New York, (1981) Pg. 179.Google Scholar
10. Barbee, l.W. Jr., in “X-ray and Vacuum Ultraviolet Interaction Data Bases, Calculations and Measurements,” Grande, N.K. De, Lee, P., Samson, J.A.R., Smith, D.Y. eds., Proc. SPIE No. 911, Pg. 169 (1988).Google Scholar
11. Barbee, l.W. Jr., Warburton, W.K., and Underwood, J.H., JOSA(B) 1, 691 (1984).Google Scholar
12. Warburton, W.K., Ludwig, K.F., Jr. and Barbee, T.W. Jr., JOSA(B) 2, 565 (1985).Google Scholar
13. Miceli, P.F., Neumann, D.A. and Zabel, H., Appl. Phys. Lett. 48, 24 (1986).Google Scholar
14. Simon, J.P., Lyon, O., Brunson, A., Marchal, G. and Piecuch, M., J. Appl. Cryst. 21, 317 (1988).CrossRefGoogle Scholar
15. Petersen, O.J., Thorne, J.M., Knight, L.V. and Barbee, T.W. Jr., “Reflectivity and Roughness of Layered Synthetic Microstructures”, SPIE Proc. No. 448, Pg. 27 (1984).Google Scholar
16. Spiller, E., “Refractive Index of Amorphous Carbon Near its K-edge,” (submitted for publication).Google Scholar
17. van Brug, H., Brujin, M.P., van der Pol, R., Wiel, M. Jvan der, Appl. Phys. Lett. 49, 914 (1986).Google Scholar
18. Rosenbluth, A.E. and Lee, P., Appl. Phys. Lett. 40, 466 (1982).Google Scholar
19. Henke, B.L., Lee, P., Tanaka, T.J., Shimabukuro, R.L., and Fujikawa, B.K., “Low energy x-ray interaction coefficients: photoabsorption, scattering and reflection. E = 100–2000 eV, Z = 1–94,” in Atomic and Nuclear Data Table 27, Academic Press, New York (1982).Google Scholar