Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T14:28:33.768Z Has data issue: false hasContentIssue false

Application of High Energy Ion Beam on the Control of Boron Diffusion

Published online by Cambridge University Press:  01 February 2011

Wei-Kan Chu
Affiliation:
Department of Physics, and Texas Center for Superconductivity and Advanced Materials, University of Houston, Houston, TX 77204, U.S.A.
Lin Shao
Affiliation:
Department of Physics, and Texas Center for Superconductivity and Advanced Materials, University of Houston, Houston, TX 77204, U.S.A.
Jiarui Liu
Affiliation:
Department of Physics, and Texas Center for Superconductivity and Advanced Materials, University of Houston, Houston, TX 77204, U.S.A.
Get access

Abstract

Anomalous diffusion of boron during annealing is a detriment on the fabrication of ultrashallow junction required by the next generation Si devices. This has driven the need to develop new doping methods. In the point defect engineering approach, high-energy ion bombardments inject vacancies near the surface region and create excessive interstitials near the end of projected range of incident ions. Such manipulation of point defects can retard boron diffusion and enhance activation of boron. We will review the current understanding of boron diffusion and our recent activities in point defect engineering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hofker, W.K., Werner, H.W., Oosthoek, D.P., and Koeman, N.J., Appl. Phys. Lett. 4, 125(1974).Google Scholar
2. Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289(1989).Google Scholar
3. Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81, 6031(1997).Google Scholar
4. Agarwal, A., Gossmann, H-J., Eaglesham, D.J., Pelaz, L., Jacobson, D.C., Haynes, T.E., and Yu.E., Erokhin, Appl. Phys. Lett. 71, 3141(1997).Google Scholar
5. Cowern, N.E.B., Mannino, G., Stolk, P.A., Roozeboom, F., Huizing, H.G.A., van Berkum, J.G.M., Cristiano, F., Claverie, A., and Jarafz, M., Phys. Rev. Lett. 82, 4460(1999).Google Scholar
6. Jain, S.C., Ashok.K., Kapoor, Wim, Geens, Poortmans, J., Mertens, R., and Willander, M., J. Appl. Phys. 92, 3752 (2002).Google Scholar
7. Shao, L., Liu, J.R., Chen, Q.Y. and Wei-Kan, Chu, Material Science and Technolgy R: Reports, 42, 65(2003).Google Scholar
8. Shao, L., Lu, X., Yue, J., Li, Q., Liu, J.R., van de Heide, P.A.W. and Wei-Kan, Chu, Appl. Phys. Lett. 74, 3953(2000).Google Scholar
9. Shao, L., Lu, X., Wang, X., Rusokeva, I., Liu, J. and Chu, W.K., Appl. Phys. Lett. 76, 2321(2001).Google Scholar
10. Shao, L., Wang, X., Liu, J., Bennett, J., Larsen, L. and Wei-Kan, Chu, J. Appl. Phys. 92, 4307 (2002).Google Scholar
11. Shao, L., Thompson, P.E., Bleiler, R.J., Baumann, S., Wang, X., Chen, H., Liu, J. and Wei-Kan, Chu, J. Appl. Phys. 92, 5793(2002).Google Scholar
12. Shao, L., Thompson, P.E., Wang, X.M., Chen, H., Wei-Kan, Chu, Electrochem. Solid. State Lett. 5, G93(2002).Google Scholar
13. Shao, L., Thompson, P.E., Bennett, J., Dharmaiahgari, B.P., Trombetta, L., Wang, X., Chen, H., Seo, H.W., Chen, Q.Y., Liu, J.R. and Wei-Kan, Chu, Appl. Phys. Lett 83, 2823(2003).Google Scholar
14. Shao, L., Wang, X., Chen, H., Liu, J., Bennett, J., Larsen, L., and Chu, W-K., Electrochem. Solid State Lett. 6, G82(2003).Google Scholar
15. Winterbon, K.B., Radiat. Eff. 46, 181(1980).Google Scholar
16. Giles, M.D., J. Electrochem. Soc. 138, 1160(1991).Google Scholar
17. Raineri, V., Schreutelkamp, R.J., Saris, F.W., Jansen, K.T.F., and Kaim, R.E., Appl. Phys. Lett. 58, 922(1991).Google Scholar
18. Holland, O.W. and White, C.W., Nucl. Instrum. Methods Phys. Res. B 59/60, 353(1991).Google Scholar
19. Roth, E.G., Holland, O.W., Venezia, V.C., and Nielsen, B., J. Electron. Mater. 26, 1349(1997).Google Scholar
20. Venezia, V.C., Haynes, T.E., Agarwal, A., Pelaz, L., Gossmann, H.-J., Jacobson, D.C. and Eaglesham, D.J., Appl. Phys. Lett. 74, 1299(1999).Google Scholar
21. Shao, L., Thompson, P.E., van de herde, P.A., Chen, Q., Wang, X., Chen, H., Liu, J. and WeiKan, Chu, unpublished.Google Scholar
22. Shao, L., Zhang, J., Chen, J., Tang, D., Thompson, P.E., Patel, S., Wang, X., Chen, H., Liu, J., and Wei-Kan, Chu, Appl. Phys. Lett. to be published.Google Scholar
23. Shao, L., Wang, X.M., Rusakova, I., Chen, H., Liu, J., Bennett, J., Larsen, L., Jin, J., van der Heide, P.A.W., and Wei-Kan, Chu, J. Appl. Phys. 92, 5788 (2002).Google Scholar
24. Chu, W.K., Shao, L., Liu, J.R., Lu, X.M., Wang, X.M., U.S. Patent Application (Sept. 2002).Google Scholar