Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T02:20:34.639Z Has data issue: false hasContentIssue false

Application of a Knowledge-Based Expert System for Assisting in Catalyst Design

Published online by Cambridge University Press:  10 February 2011

E. Körting
Affiliation:
Institut für Angewandte Chemie Berlin-Adlershof e.V. (Institute for Applied Chemistry), Rudower Chaussee 5, D-12484 Berlin, Germany
M. Baerns*
Affiliation:
Institut für Angewandte Chemie Berlin-Adlershof e.V. (Institute for Applied Chemistry), Rudower Chaussee 5, D-12484 Berlin, Germany, baerns@aca.fta-berlin.de
*
* To whom correspondence should be addressed
Get access

Abstract

The prototype expert system ESYCAD (expert system for catalyst design) was set up for assisting in the design of heterogeneous catalysts. It selects materials as catalyst components which have all required properties for the various (elementary) steps of a target reaction but which do not catalyze undesired side reactions. If necessary, also secondary catalytic components or promoters are selected; furthermore, reaction conditions are proposed if required by catalyst properties. The application of the system is illustrated by examples for CO-hydrogenation, alkane dehydrogenation, and for oxidative coupling of methane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Trimm, D.L., Design of Industrial Catalysts (Elsevier, Amsterdam, 1980).Google Scholar
2 Baerns, M. and Körting, E., in Handbook of Heterogeneous Catalysis, edited by Erti, G., Knözinger, H. and Weitkamp, J. (to be published by Verlag Chemie, Weinheim).Google Scholar
3 Bañares-Alcántara, R., Westerberg, A.W., Ko, E.I. and Rychener, M.D., Comput. Chem. Engng. 11, 265 (1987); 12, 923 (1988).Google Scholar
4 Speck, H., Hölderich, W., Himmel, W., Irgang, M., Koppenhöfer, G. and Mroβ, W.D., in Computer applications in the chemical industry, DECHEMA-monographs, Vol. 116, (Verlag Chemie, Weinheim, 1989) p. 43.Google Scholar
5 Kito, S., Hattori, T. and Murakami, Y., Appl. Catal. 48, 107 (1988).Google Scholar
6 Hattori, T., Niwa, H., Satsuma, A. and Kito, S., Murakami, Y., Appl. Catal. 50, 11 (1989).Google Scholar
7 Kito, S., Hattori, T. and Murakami, Y., Chem. Eng. Sci. 45, 2661 (1990).Google Scholar
8 Kito, S., Hattori, T. and Murakami, Y., in Catalytic Science and Technology, edited by Yoshida, S., Takezawa, N. and Ono, T. (Proc. of the Tokyo Conf. on Advanced Catalytic Science and Technol., Vol. 1, Kodansha or VCH, New York, 1991) p. 285.Google Scholar
9 Hattori, T., Niwa, H., Satsuma, A., Kito, S. and Murakami, Y., Stud. Surf. Sci. Catal. 75, 489 (1993).Google Scholar
10 Sun, Y.H. and Li, Y.W., Chem. Eng. Sci. 47, 2799 (1992).Google Scholar
11 Prevoo, H., Körting, E., Leherte, L., Derouane, E.G. and Vercauteren, D.P., Stud. Surf. Sci. Catal. 94, 525 (1995).Google Scholar
12 Körting, E. and Baems, M., Chem.-Ing.-Tech. 62, 365 (1990).Google Scholar
13 Körting, E. and Baerns, M., in Computer Aided Innovation of New Materials II, edited by Doyama, M., Kihara, J., Tanaka, M. and Yamamoto, R. (Part 1, Elsevier, Amsterdam, 1993) p. 1107.Google Scholar
14 Tammann, G. and Mansuri, Q.A., Z. Anorg. Allg. Chem. 126, 119 (1923).Google Scholar
15 Iglesia, E., Reyes, S.C., Majon, R.J. and Soled, S.L.; Adv. Catal. 39, 221 (1993).Google Scholar
16 Hindermann, J.P., Hutchings, G.J. and Kiennemann, A., Catal. Rev.-Sci. Engng. 31, 1 (1993).Google Scholar
17 Kung, H.H., Adv. Catal. 40, 1 (1994).Google Scholar
18 Resasco, D.E. and Haller, G.L., in Catalysis (Vol. 11, Royal Society, Cambride 1995) p. 379.Google Scholar
19 Feng, Z., Liu, L. and Anthony, R.G., J. Catal. 136, 423 (1992).Google Scholar
20 Kitagawa, H., Sendoda, Y. and Ono, Y., J. Catal. 101, 12 (1986).Google Scholar
21 Bandiera, J. and Taarit, Y.B., Appl. Catal. 62, 309 (1990).Google Scholar
22 Haber, J., Pure Appl. Chem. 50, 923 (1978).Google Scholar
23 Gray, D.E., in Am. Inst. Phys. Handbook (3rd ed., McGraw-Hill, New York, 1972).Google Scholar
24 Kompa, C., Diploma thesis, Ruhr-University Bochum, 1992.Google Scholar
25 Kubik, M., Diploma thesis, Ruhr-University Bochum, 1993.Google Scholar
26 Yao, J., le van Mao, R. and Dufresne, L., Appl. Catal. 65, 189 (1990).Google Scholar
27 Schulz, P. and Baerns, M., Appl. Catal. 78, 15 (1991).Google Scholar
28 Steinberg, K.-H., Mroczek, U. and Roessner, F., Appl. Catal. 66, 37 (1990).Google Scholar
29 Liwu, L., Tao, Z., Jingling, Z. and Zusheng, X., Appl. Catal. 67, 11 (1990).Google Scholar
30 Box, E.O. Jr and Hepp, H.J., U.S. Patent No. 3 461 177 (1969).Google Scholar
31 Olbrich, M.E., McKay, D.L. and Montgomery, D.P., U.S. Patent No. 4 926 005 (1990).Google Scholar
32 Thangaraj, A., Kumar, R., Mirajkar, S.P. and Ratnasamy, P., J. Catal. 130, 1 (1991).Google Scholar
33 Tanabe, K., Mater. Chem. Phys. 13, 347 (1985).Google Scholar
34 Nakano, Y., Iizuka, T., Hattori, H. and Tanabe, K., J. Catal. 57, 1 (1978).Google Scholar
35 Ji, L. and Liu, J., Chem. Commun., 1203 (1996).Google Scholar
36 Morales, E. and Lunsford, J.H., J. Catal. 118, 255 (1989).Google Scholar
37 Kennedy, E.M. and Cant, N.W., Appl. Catal. 75, 321 (1991).Google Scholar
38 Buyevskaya, O.V. (private communication, 1996).Google Scholar
39 Filkova, D., Wolf, D., Gayko, G., Baerns, M. and Petrov, L., submitted to Appl. Catal.Google Scholar