Skip to main content Accessibility help
×
Home

Anodic Aluminum Oxide (AAO) Membranes for Neurite Outgrowth

  • Meghan E. Casey (a1), Anthony P. Ventura (a2) (a3), Wojciech Z. Misiolek (a2) (a3) and Sabrina Jedlicka (a1) (a2) (a4)

Abstract

Anodic aluminum oxide (AAO) membranes were fabricated in a mild two-step anodization procedure. The voltage was varied during both anodization steps to control the pore size and morphology of the AAO membranes. Pore sizes ranged from 34 nm to 117 nm. Characterization of the pore structure was performed by scanning electron microscopy (SEM). To assess the potential of the AAO membranes as a neuronal differentiation platform, C17.2 neural stem cells (NSCs), an immortalized and multipotent cell line, were used. The NSCs were forced to differentiate via serum-withdrawal. Cellular growth was characterized by immunocytochemistry (ICC) and SEM. ImageJ software was used to obtain phenotypic cell counts and neurite outgrowth lengths. Results indicate a highly tunable correlation between AAO nanopore sizes and differentiated cell populations. By selecting AAO membranes with specific pore size ranges, control of neuronal network density and neurite outgrowth length was achieved.

Copyright

References

Hide All
1. Kempermann, G., Jessberger, S., Steiner, B., Kronenberg, G., Trends Neurosci. 27, 447452 (2004).
2. Lie, D. C., Song, H., Colamarino, S. A., Ming, G. and Gage, F. H., Annu. Rev. Pharmacol. Toxicol. 44, 399421 (2004).
3. Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Aldea, S., Hartwieg, E. A. and Cepko, C. L., Cell 68, 3351 (1992).
4. Snyder, E. Y., Yoon, C., Flax, J. D. and Macklis, J. D., Proc. Natl. Acad. Sci. 94, 1166311668 (1997).
5. Li, F., Zhang, L. and Metzger, R. M., Chem. Mater. 10, 24702480 (1998).
6. Belwalkar, A., Grasing, E., Van Geertruyden, W., Huang, Z. and Misiolek, W. Z., J Memb Sci. 319, 192198 (2008).
7. Bai, A., Hu, C., Yang, Y. and Lin, C., Electrochimica Acta 53, 22582264 (2008).
8. Hu, J., Tian, J. H., Shi, J., Zhang, F.. He, D. L., Liu, L., Jung, D. J., Bai, J. B. and Chen, Y., Microelectronic Engineering 88, 17141717 (2011).
9. Masuda, H. and Fukuda, K., Science 268, 14661468 (1995).
10. Sulka, G. D., Stroobants, S., Moshchalkov, V., Borghs, G. and Celis, J. P., J Electrochem. Soc. 149, D97D103 (2002).
11. Jaworski, J., Spangler, S., Seeburg, D. P., Hoogenraad, C. C. and Sheng, M., J Neurosci. 25, 1130011312 (2005).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed