Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T06:55:13.764Z Has data issue: false hasContentIssue false

Anode Composites Based on NiO and Apatite-Type Lanthanum Silicate for Intermediate Temperature Solid Oxide Fuel Cells

Published online by Cambridge University Press:  01 February 2011

Tamara Kharlamova
Affiliation:
kharlamova@catalysis.ru, Boreskov Institute of Catalysis, Laboratory of Deep Oxidation Catalysts, pr. Lavrentieva 5, Novosibirsk, 330090, Russian Federation, +7 383 330 7672, +7 383 330 96 87
Svetlana Pavlova
Affiliation:
pavlova@catalysis.ru, Boreskov Institute of Catalysis, Novosibirsk, 330090, Russian Federation
Vladislav Sadykov
Affiliation:
sadykov@catalysis.ru, Boreskov Institute of Catalysis, Novosibirsk, 330090, Russian Federation
Tamara Krieger
Affiliation:
krieger@catalysis.ru, Boreskov Institute of Catalysis, Novosibirsk, 330090, Russian Federation
Galina Alikina
Affiliation:
galikina@yandex.ru, Boreskov Institute of Catalysis, Novosibirsk, 330090, Russian Federation
Jorge Frade
Affiliation:
jfrade@cv.ua.pt, University of Aveiro, Aveiro, 3810-193, Portugal
Christos Argirusis
Affiliation:
christos.argirusis@tu-clausthal.de, Clausthal University of Technology, Clausthal-Zellerfeld, 38678, Germany
Get access

Abstract

Composite materials based on NiO and doped apatite-type lanthanum silicates (ATLS) that are new class of solid electrolytes were studied as anode materials for intermediate temperature solid oxide fuel cells (IT SOFC), with possibility to use both H2 and CH4 as a fuel being payed attention to. For cermets preparation different methods of Ni addition such as incipient wetness impregnation, modified Pechini methods or mechanical mixing were used. The composite materials were characterized by XRD, BET, TPO and methane steam reforming reaction. Doping with complex oxides possessing a high mobility of the lattice oxygen and partial Ni substitution by the mixed conductor were applied to improve anode stability to coking.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yamamoto, O., Electrochim. Acta 45, 2423 (2000).Google Scholar
2 Song, C., Catal. Today 77, 17 (2002).Google Scholar
3 Nakayama, S., Kageyama, T., Aono, H., Sadaoka, Y., J. Mater. Chem. 5 (11), 1801 (1995)Google Scholar
4 Kendrick, E., Islam, M.S., Slater, P.R., J. Mater. Chem. 17, 3104 (2007).Google Scholar
5 Jiang, S.P., Chan, S.H., J. Mater. Sci. 39, 4405 (2004).Google Scholar
6 Gross, M.D., Vohr, J.M., Gorte, R.J., J. Mater. Chem. 17, 3071 (2007).Google Scholar
7 Kharlamova, T., Pavlova, S., Sadykov, V., Lapina, O., Khabibulin, D., Krieger, T., Zaikovskii, V., Ishchenko, A., Salanov, A., Muzykantov, V., Mezentseva, N., Chaikina, M., Uvarov, N., Frade, J., Chr. Argirusis, Solid State Ionics, doi:10.1016/j.ssi.2008.01.028 (2008) (in press).Google Scholar
8 Sadykov, V.A., Borchert, Yu.V., Alikina, G.M., Lukashevich, A.I., Mezentseva, N.V., Muzykantov, V.S., Moroz, E.M., Rogov, V.A., Zaikovskii, V.I., Zyuzin, D.A., Uvarov, N.F., Ishchenko, A.V., Zyryanov, V.V. and Smirnova, A., Glass Physics Chem. 33, 320 (2007).Google Scholar
9 Kim, H., Lu, C., Worrell, W. L., Vohs, J.M., Gorte, R. J., J. Electrochem. Soci. 149 (3), 247 (2002).Google Scholar
10 Shaula, A.L., Kharton, V.V., Marques, F.M.B., J. Solid State Chem. 178, 2050 (2005).Google Scholar