Skip to main content Accessibility help

Annealing effects on metal-ZnO interface for improvement performance of Thin-film Transistors

  • Miguel A. Dominguez (a1), Francisco Flores (a1), Adan Luna (a1), Salvador Alcantara (a1), Javier Martinez (a1), Jose A. Luna-Lopez (a1), Pedro Rosales (a2) and Claudia Reyes (a2)...


In this work, the annealing effects at 180°C in Aluminum-ZnO contacts as function of time were studied. Also, the application in TFTs of ZnO films obtained at low-temperature (200°C) are presented. The ZnO films obtained by ultrasonic Spray Pyrolysis at 200 °C were deposited over Aluminum contacts on SiO2/Si wafers to demonstrate the use of active layer in thin-film transistors. The results show that an improvement can be obtained in metal-ZnO interfaces by low-temperature annealing treatments. However, long annealing time degrade the metal-ZnO interface and may affect the electrical performance of the device.


Corresponding author


Hide All
1. Ortel, M., Trostyanskaya, Y. and Wagner, V., Solid State Electron., 86, 22 (2013).
2. Adamopoulos, G., Bashir, A., Gillin, W., Georgakopoulos, S., Shkunov, M., Baklar, M., Stingelin, N., Bradley, D. and Anthopoulos, T., Adv. Funct. Mater., 21, 525 (2011).
3. Oertel, S., Jank, M., Teuber, E., Bauer, A. and Frey, L., Thin Solid Films, 553, 114 (2014).
4. Ming, Y., Ling, X., Yu, L., Yan, D. and Jing, H., Chin. Phys. Lett., 28, 017302 (2011).
5. Bashir, A., Wobkenberg, P., Smith, J., Ball, J., Adamopoulos, G., Bradley, D. and Anthopoulos, T., Adv. Mater., 21, 2226 (2009).
6. Morkoc, H. and Ozgur, U., Zinc Oxide, (Wiley-VCH, 2009).
7. Kim, H., Han, S., Seong, T. and Choi, W., Appl. Phys. Lett, 77, 1647 (2000).
8. Kim, H., Han, S., Seong, T. and Choi, W., J. Electrochem. Soc, 148, G114 (2001).
9. Hoppe, V., Stachel, D. and Beyer, D., Phys. Scr, T57, 122 (1995).
10. Ishikawa, H., Tsukui, K., Koide, Y., Teraguchi, N., Tomomura, Y., Susuki, A. and Murakami, M., J. Vac. Sci. Technol. B, 14, 1812 (1996).
11. Sheng, H., Emanetoglu, N., Muthukumar, S., Feng, S. and Lu, Y., J. Electron. Mater., 31, 811 (2002).
12. Iliadis, A., Vispute, R., Venkatesan, T. and Jones, K., Thin Solid Films, 420421, 478 (2002).
13. Lee, J., Kim, K., Park, S. and Choi, W., Appl. Phys. Lett, 78, 3842 (2001).
14. Kim, H., Kim, K., Park, S., Seong, T. and Yoon, Y., Jpn. J. Appl. Phys., 41, L546 (2002).
15. Akane, T., Sugioka, K. and Midorikawa, K., J. Vac. Sci. Technol. B, 18, 1406 (2000).
16. Olvera, M., Gomez, H. and Maldonado, A., Sol. Energy Mater. Sol. Cells, 91, 1449 (2007).
17. Nunes, P., Malik, A., Fernandes, B., Fortunato, E., Vilarinho, P. and Martins, R., vacuum, 52, 45 (1999).
18. Nunes, P., Fortunato, E. and Martins, R., Inter. J. Inorg. Mater., 3, 1125 (2001).
19. Lee, J. and Park, B., Mater. Sci. Eng. B, 106, 242 (2004).
20. Schroder, D., Semiconductor material and device characterization, (Wiley, New York, 1998).
21. Nunes, P., Fernandes, B., Fortunato, E., Vilarinho, P., Martins, R., Thin Solid Films, 337, 176 (1999).
22. Valleta, A., Fortunato, G., Mariucci, L., Barquinha, P., Martins, R. and Fortunato, E., J. Display Tech, 10, 956 (2014).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed