Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T17:14:28.937Z Has data issue: false hasContentIssue false

Annealing Effect on the Activation of 1.54 [νm Emission from Erbium in a-Si:H Matrix Prepared by DC Magnetron Sputtering

Published online by Cambridge University Press:  10 February 2011

A.A. Andreev
Affiliation:
loffe Physico-Technical Institute, St.-Petersburg 194021, Russia
V.G. Golubev
Affiliation:
loffe Physico-Technical Institute, St.-Petersburg 194021, Russia, golubev@gvg.ioffe.rssi.ru
A.V. Medvedev
Affiliation:
loffe Physico-Technical Institute, St.-Petersburg 194021, Russia
A.B. Pevtsov
Affiliation:
loffe Physico-Technical Institute, St.-Petersburg 194021, Russia
V.B. Voronkov
Affiliation:
loffe Physico-Technical Institute, St.-Petersburg 194021, Russia
Get access

Abstract

Cumulative thermal annealing (TA) changes the photoluminescence (PL) intensity in erbium-doped a-Si:H films prepared using DC magnetron sputtering of a composite Er-Si target at substrate temperature 200°C. The intensity of erbium-related 1.54 νm PL at 77 K is enhanced about 50 times after TA at 300°C for 15 min in nitrogen atmosphere. No erbium-related PL is observed after TA at T≤500°C. The TA process is discussed in terms of a model of partial structural rearrangement in an a-Si(Er):H amorphous network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Rare Earth Doped Semiconductor II, edited by Coffa, S., Polman, A., and Schwartz, R.N. (Mater. Res. Soc. Symp. Proc. 422, Pittsburgh, PA, 1996), pp. 1366.Google Scholar
2 Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar
3 Sobolev, N.A., Fiz. Tekh. Poluprovodn. 29, 1153 (1995) [Semiconductors 29, 595 (1995)].Google Scholar
4 Bresler, M.S., Gusev, O.B., Kudoyarova, V.Kh., Kuznetsov, A.N., Pak, P.E., Terukov, E.I., Yassievich, I.N., Zaharchenya, B.P., Appl. Phys. Lett. 67, 3599 (1995).Google Scholar
5 Terukov, E.I., Kudoyarova, V.Kh., Mezdrogina, M.M., Golubev, V.G., Sturm, A., Fuhs, W., Fiz. Tekh. Poluprovodn. 30, 820 (1996) [Semiconductors 30, 440 (1996)].Google Scholar
6 Shin, J.H., Serna, R.. Hoven, G.N., Polman, A., Sark, W.G.J.H.M., Vredenberg, A.M., Appl. Phys.Lett. 68, 997 (1996).Google Scholar
7 Zanatta, A.R., Nunes, L.A.O.. Appl. Phys. Lett. 70, 511 (1997).Google Scholar
8 Zanatta, A.R., Nunes, L.A.O., Appl. Phys. Lett. 71, 3679 (1997).Google Scholar
9 Beyer, W., Tetrahedally-Bonded Amorphous Semiconductors, edited by Adler, D. and Fritzsche, H. (Plenum Press, New York, 1985), p. 129.Google Scholar
10 Jackson, W.B., Zhang, S.B., Transport, Correlation and Structural Defects, edited by Fritzsche, H. (World Scientific Publishing Company, Singapore, 1990), p.63.Google Scholar
11 Rettinger, A., Stimmer, J., Abstreiter, G., Appl. Phys. Lett. 70, 2431 (1997).Google Scholar