Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-27T23:04:28.446Z Has data issue: false hasContentIssue false

Anisotropic Reactive Ion Etching of Submicron W Features In CF4 or SF6 Plasmas

Published online by Cambridge University Press:  26 February 2011

T. R. Fullowan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
G. E. Mahoney
Affiliation:
AT&T Bell Laboratories, Reading, PA
R. L. Kostelak
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
Get access

Abstract

Anisotropie RIE etching of Tungsten (W) in a low voltage CF4 or SF6 plasma while achieving features as small as 0.50 μm is demonstrated using Titanium (Ti) as an etch mask. For reasons of reliability and tolerance to high temperature processing techniques, W can be a desirable contact metal in microelectronics fabrication. Due to its high melting point (3400°C) it is not practical to evaporate W contacts using conventional liftoff photolithography methods. Therefore pattern transfer of sputtered W must be performed by plasma etching using some type of mask. In III-V materials systems, a Fluorine based plasma is desirable due to its high selectivity for W over semiconductor materials. The problem is that when using conventional photoresist masks, W does not etch anisotropically. Therefore critical feature dimensions (which are sub-micron for FET gates) and vertical profiles cannot be successfully transferred to the underlying W. However by using a Ti mask during the CF4 or SF6 plasma etch, TiF4 is produced on the sidewalls of the W inhibiting any horizontal etch. The Ti mask can be removed selectively after etching of the W is complete. Using a Ti mask to etch W ensures excellent pattern transfer of device dimensions even at very low bias voltage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chow, T. P. and Steckl, A. J., A Critique of Refractory Gate Applications for MOS VLSI, in VLSI Electronics, Academic New York, 1985, Vol. 9, Chap. 2.Google Scholar
2. Blewer, Robert S., Solid State Technol., 1986 (No. 11), 117.Google Scholar
3. Plasma Processing for VLSI, Vol. 8, ed. Einspruch, N. G. and Brown, D. M., (Acedemic Press, NY 1984).Google Scholar
4. Chow, T. P., Saxena, A. N., Ephath, L. E. and Bennet, R. S., Chap. 2 in Dry Etching for Microelectronics, Powell, R. A. (North-Holland, Amsterdam, 1984).Google Scholar
5. Franssila, S., Proc. 7th Symp. on Plasma Processing ed. Mathad, G., Schwartz, G. and Wiltess, D. (Electrochem. Soc, Pennington, NJ 1988) pp. 228229.Google Scholar
6. Shattenburg, M. L., Plotnik, I. and Smith, H. I., J. Vac. Sci. Technol. B 3, 272 (1985).CrossRefGoogle Scholar
7. Suzuki, K., Okudaira, S., Nichimatsu, S., Usomi, K., Kanomata, I. and J. Electrochem. Soc, 129 2764 (1982).CrossRefGoogle Scholar
8. Randall, J. N., Wolfe, J. C., Appl. Lett. 39 742 (1981).Google Scholar
9. Tang, C. C., Hess, D. W., J. Electrochem. Soc. 131 (Jan), 115 (1984).CrossRefGoogle Scholar
10. Picard, A. and Turban, G., Plasma Chem. Plasma Proc. 5 (No. 4), 3333 (1985).Google Scholar
11. Tennant, D. M., Shunk, S. C., Feuer, M. D., Kuo, J. M., Dehringer, R. E., Chang, T. Y. and Epwoith, D. W., J. Vac. Sci. Technol. B 7, 1836 (1989).CrossRefGoogle Scholar
12. Jurgensen, C. W., Kola, R. A., Novembre, A. E., Tai, W., Frackoviak, J., Trimble, L. E. and Cedler, G. K., to be published J. Vac. Sci. Technology B (Dec. 1991).Google Scholar
13. Tachi, S., Tsujimoto, K., Arai, S., Kure, T., J. Vac. Sci. Technol. A, 9, 796 (1991).Google Scholar
14. Ren, F., Fullowan, T. R., Abernathy, C. R., Pearton, S. J., Smith, P. R., Kopf, R. F., Laskowski, E. J. and Lothian, J. R., Electronics Letters, 27 1054 (1991).Google Scholar