Skip to main content Accessibility help
×
Home

Angular Fourier Mapping; Highlighting lattice structures without destroying original data

  • Johannes H. Kindt (a1), James B. Thompson (a1), George T. Paloczi (a1) (a2), Martina Michenfelder (a3), Bettye L. Smith (a1) (a3), Galen Stucky (a4), Daniel E. Morse (a3) and Paul K. Hansma (a1)...

Abstract

A two-dimensional Fourier transformation, FT, is used to isolate two different lattice structures within one scanning probe microscope, SPM, image. The isolated structures are then used to create a two-color map that encodes the presence of these structures within the image. The color map is normalized in brightness and then used to color-code the original black and white SPM data. The distribution of different structures becomes obvious, while all original brightness information is preserved in this combined image.

Copyright

References

Hide All
[1] Park, S.-I. and Quate, C. F.. 1987. Digital filtering of scanning tunneling microscope images. J. Appl. Vac. Phys. 312–14
[2] Kindt, Johannes H.. Lattice Paint. http://hansmalab.physics.ucsb.edu/latticepaint/ At the date this paper was written, URLs or hotlinks referenced herein were deemed to be useful supplementary material to this paper. Neither the author nor the Materials Research Society warrants or assumes liability for the content or availability of URLs referenced in this paper.
[3] Belcher, A. M., Wu, X. H., Christensen, R. J., Hansma, P. K., Stucky, G. D., and Morse, D. E.. 1996. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature. 381:5658.
[4] Falini, G., Albeck, S., Weiner, S., and Addadi, L.. 1996. Control of aragonite polymorphism by mollusk shell macromolecules. Science. 271:6769.
[5] Samata, T., Hayashi, N., Kono, M., Hasegawa, K., Horita, C., and Akera, S.. 1999. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. Febs Lett. 462:225229.
[6] Kono, M., Hayashi, N., and Samata, T.. 2000. Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem. Bioph. Res. Co. 269:213218.
[7] Kuznetsov, Y. G., Malkin, A. J., Glantz, W., and McPherson, A.. 1995. In situ atomic force microscopy studies of protein and virus crystal growth mechanisms. In Sixth International Conference, Hiroshima, Japan. 6373.
[8] G. T., Paloczi, Smith, B. L., Hansma, P. K., Walters, D. A., and Wendman, M. A.. 1998. Rapid imaging of calcite crystal growth using atomic force microscopy with small cantilevers. Appl. Phys. Lett. 73:16581660.
[9] Teng, H. H., Dove, P. M., Orme, C. A., and Yoreo, J. J. De. 1998. Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science. 282:724727.
[10] Land, T. A., Martin, T. L., Potapenko, S., Palmore, G. T., and Yoreo, J. J. De. 1999. Recovery of surfaces from impurity poisoning during crystal growth. Nature. 399:442445.
[11] Hillner, P. E., Gratz, A. J., Manne, S., and Hansma, P. K.. 1992. Atomic-scale imaging of calcite growth and dissolution in real time. Geology. 20:359362.
[12] Ohnesorge, F., and Binnig, G.. 1993. True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science. 260:14511456.
[13] Stipp, S. L. S., Eggleston, C. M., and Nielsen, B. S.. 1994. Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM). Geochim. Cosmochim. Ac. 58:30233033.
[14] Liang, Y., Lea, A. S., Baer, D. R., and Engelhard, M. H.. 1996. Structure of the cleaved CaCO3 (1014) surface in an aqueous environment. Surf. Sci. 351:172–82.
[15] Walters, D. A., Smith, B. L., Belcher, A. M., Paloczi, G. T., Stucky, G. D., Morse, D. E., and Hansma, P. K.. 1997. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study. Biophys. J. 72:1425–33.
[16] Thompson, J. B., Paloczi, G. T., Kindt, J. H., Michenfelder, M., Smith, B. L., Stucky, G., Morse, D. E., and Hansma, P. K.. 2000. Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins. Biophys. J. In Press.
[17] Cooley, J. W. and Tukey, J.W.. 1965. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19:297301.

Related content

Powered by UNSILO

Angular Fourier Mapping; Highlighting lattice structures without destroying original data

  • Johannes H. Kindt (a1), James B. Thompson (a1), George T. Paloczi (a1) (a2), Martina Michenfelder (a3), Bettye L. Smith (a1) (a3), Galen Stucky (a4), Daniel E. Morse (a3) and Paul K. Hansma (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.