Skip to main content Accessibility help
×
Home

Analysis of plasma for carbon nanotube growth by plasma-enhanced chemical vapor deposition

Abstract

Optical emission spectra of a CH4/H2/Ar gas mixture plasma were observed during carbon nanotube (CNT) growth in RF plasma-enhanced chemical vapor deposition. CNTs with diameters of ∼10-30 nm and length of ∼6 μm were grown on double- and triple-layered films of catalyst/support materials (FexOy/TiO2 and Al2O3/FexOy/Al2O3) at the total gas pressures of 1-10 Torr with gas flow rates of CH4 = 27 sccm, H2 = 3 sccm, and Ar = 1 sccm. The number density of CNTs increased with the gas pressure, and Al2O3/FexOy/Al2O3 (each thickness of 1 nm) film yielded the thinnest CNTs with a high number density among the present catalysts. The spatial distributions of H atom relative density in the plasma were obtained by actinometry. The H relative density decreased with the pressure, and this suggests the suppression of CH3 radical generation in the plasma.

Copyright

References

Hide All
1 Iijima, S., Nature 354, 147 (1991).
2 Han, J., in Carbon Nanotubes: Science and Applications, edited by Meyyappan, M., (CRC Press LLC, Boca Raton, 2005), pp. 124.
3 Dai, H., Acc. Chem. Res. 35, 1035 (2002).
4 Nihei, M., Horibe, M., Kawabata, A., and Awano, Y., Jpn. J. Appl. Phys. 43, 1856 (2004).
5 Meyyappan, M., Delzeit, L., Cassell, A., and Hash, D., Plasma Sources Sci. Technol. 12, 205 (2003)
6 Okita, A, Suda, Y., Oda, A., Ozeki, A., Nakamura, J., Sugawara, H., and Sakai, Y., J. Appl. Phys. (accepted for publication)
7 Kato, T., Jeong, G. H., Hirata, T., Hatakeyama, R., Tohji, K., and Motomiya, K., Chem. Phys. Lett. 381, 422 (2003).
8 Denysenko, I. B., Xu, S., Long, J. D., Rutkevych, P. P., Azarenkov, N. A., and Ostrikov, K., J. Appl. Phys. 95, 2713 (2004).
9 Cruden, B. A., Cassell, A. M., Hash, D. B., and Meyyappan, M., J. Appl. Phys. 96, 5284 (2004).
10 Sato, S., Kawabata, A., Kondo, D., Nihei, M., and Awano, Y., Chem. Phys. Lett. 402, 149 (2005).
11 Zhang, R. Y., Amlani, I., Baker, J., Tresek, J., and Tsui, R. K., Nano Lett. 3, 731 (2003).
12 Zhong, G., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., and Kawarada, H., Chem. Vap. Deposition. 11, 127 (2005).
13 Delzeit, L., McAnich, I., Cruden, B. A., Hash, D., Chen, B., Han, J., and Meyyappan, M., J. Appl. Phys. 91, 6027 (2002).
14 Cui, J., and Fang, R. C., J. Appl. Phys. 81, 2856 (1997).
15 Pearse, R. W. B., and Gaydon, A. G., The identification of molecular spectra, 4th ed. (Chapman and Hall Ltd., London and New York, 1976) pp. 4118.
16 “NIST Atomic Spectra database”, http://physics.nist.gov/
17 Coburn, J. W., and Chen, M., J. Appl. Phys. 51, 3134 (1980).
18 Barshilia, H. C., and Vankar, V. D., J. Appl. Phys. 80, 3694 (1996).
19 Delzeit, L., Chen, B., Cassell, A., Stevens, R., Nguyen, C., and Meyyappan, M., Chem. Phys. Lett. 348, 368 (2001).

Keywords

Analysis of plasma for carbon nanotube growth by plasma-enhanced chemical vapor deposition

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed