Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-19T08:18:08.726Z Has data issue: false hasContentIssue false

An X-ray Photoelectron Spectroscopie Study of B-N-Ti system

Published online by Cambridge University Press:  10 February 2011

Sudipta Seal
Affiliation:
MS 7–222, Advanced Light Source, LBL, UC-Berkeley, Berkeley, CA 94720, USA, sudipta@csal.lbl.gov
Tery L. Barr
Affiliation:
Materials Eng. and Laboratory for Surface Studies, University of Wisconsin, EMS 574, 3200 N. Cramer St., Milwaukee, WI 53211, USA, terybarr@alpha2.csd.uwm.edu
Natalie Sobczak
Affiliation:
Foundry Research Institute, Cracow, 30–418, Poland, natalie@czapla.IOd.krakow.pl
Ewa Benko
Affiliation:
Institute of Metal Cutting, Cracow 30–011, Poland, Ewa.Benko@atena.ios.krakow.pl
J. Morgiel
Affiliation:
Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Cracow., Poland, nmmorgie @al.imim-pan.krakow.pl
Get access

Abstract

Composite nitrides (such as BN, TiN) are widely used in various industrial applications because of their extreme wear and corrosion resistance, thermal and electrical properties. In order to obtain composite materials with mese optimal properties, it is important to elucidate whether any chemical reactions occur at nitride/metal interfaces, e.g., those involving BN-Ti/TiN. Materials of interest include the deposition by PVD of Ti and TiN on BN substrates. Some of these systems were then subjected to varying degrees of physical and thermal alteration. Detailed X-ray photoelectron spectroscopy (XPS) has merefore been rendered of these interfaces using cross-sectional display and sputter etching. Resulting structural and morphological features have been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). Diffusion of the nitridation, oxynitride formation and interfacial growth are of general interest.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bundy, F. P. and Wentorf, R. H. Jr, J. Chem. Phys. 38, 1144 (1963).Google Scholar
2. Chen, Y. I. and Duh, J. G., Surf. Coat Technol. 48, 163 (1991).Google Scholar
3. Duh, J. G. and Doong, J. C., Surf. Coat Technol. 56, 257 (1993).Google Scholar
4. Parameswaran, V. R., Immarigeon, J. P. and Nagy, D., Surf. Coat Technol. 52, 251 (1992).Google Scholar
5. Hohl, F., Stock, H. R. and Mayr, P., Surf. Coat Technol. 54/55, 160 (1992).Google Scholar
6. Peytvi, J. L., Lebugle, A., Montel, G. and Pastor, H., High Temperatures-High Pressures 10, 341 (1978).Google Scholar
7. Karner, H., Laimer, J., Stori, H. and Rodhammer, P., 12th Plansee Seminar, 1989, Vol. 3, Tirol. Austria, 812 May (1989).Google Scholar
8. Aromma, J., Ronkainen, H., Mahiout, A., Hannula, S. P., Leyland, A., Matthews, A., Matthews, B. and Brozeit, E., Mater. Sei. Eng. A140, 722, (1991).Google Scholar
9. Mitterer, C., Reuter, M. and Rodhammer, P., Surf. Coat. Technol. 41, 351, (1990).Google Scholar
10. Herr, W., Matthews, B., Broszeit, E. and Kloss, K. H., Mater. Sci Eng. A140, 616 (1991).Google Scholar
11. Knmotek, O., Breidenbach, R., Jungblut, F. and Loffler, F., Surf. Coatings Technol. 43/44, 107 (1990).Google Scholar
12. Dearnley, G. and Peacock, A. T., UK patent GB 2.197.346, A and B (1988).Google Scholar
13. Friesen, T., Haupt, J., Gissler, W., Barna, A. and Barna, P. B., Vacuum, 43, 657 (1992).Google Scholar
14. Nonotny, H., Benesovsky, F., Brukl, C. and Schob, O., Mh. Chem. 92, 403 (1961).Google Scholar
15. Holleck, H., J. Vac. Sci. Technol. A 4, 2661 (1986).Google Scholar
16. Erdemir, A. and Cheng, C. C., Ultramicrosc. 29, 266 (1989).Google Scholar
17. Erdemir, A. and Cheng, C. C., J. Vac. Sci. Technol. A7, 2486 (1989).Google Scholar
18. Erdemir, A. and Cheng, C. C., Surf. Coat. Technol. 41, 285 (1990).Google Scholar
19. Cheng, C. C., Erdemir, A. and Fenske, G. R., Surf. Coat. Technol. 39/40, 365 (1989).Google Scholar
20. Seal, S., Barr, T. L., Sobczak, N. and Benko, E., JVST, (to be published).Google Scholar
21. Helmersson, U., Johansson, B. O., Sundgren, J. E., Hentzell, H. T. G. and Billgren, P., J. Vac. Sci. Technol. A3, 308 (1985).Google Scholar
22. Rickerby, D. S. and Newbery, R. B., in Proceedings of IP AT 87 (CEP Consultants, Brigton, Edinburgh, UK, 1987), 224 (1987).Google Scholar
23. Barr, T. L. and Seal, S., J. Vac. Sci. Tech. A 13, 1239 (1995).Google Scholar
24. Barr, T. L., Modern ESCA: The Principles and Practice of X-Ray Photoelectron Spectroscopy, CRC Press, Boca Raton, (1994).Google Scholar
25. Morgiel, J., Benko, E., Materials Letters 25, 49 (1995).Google Scholar
26. Halbritter, J., Leiste, H., Mathes, H. J. and Walk, P., J. Anal. Chem. 341, 320 (1991).Google Scholar
27. Robinson, K. S. and Sherwood, P. M. A., Surf. Interface. Anal. 6, 261 (1984).Google Scholar
28. Ermolieff, A., Girard, M., Raow, C., Bertrand, C. and Duci, T. M., Appl. Sur. Sci. 21, 65 (1985).Google Scholar
29. Ernsberger, C., Nickerson, J., Miller, A. E. and Moulder, J., J. Vac. Sci. Technol. A3, 2415 (1985).Google Scholar
30. Colligon, J. S., Kheyrandish, H., Lesnervsky, L. N., Naumkin, A., Rogozin, A., Shkarban, I. I., Vasilyev, L. and Yurasova, V. E., Surf. Coat. Technol, 70, 9 (1994).Google Scholar
31. Arnell, R. D., Colligen, J. S., Minnebaev, K. F., Yurasova, V. E., Vacuum, 47, 425 (1996).Google Scholar
32. Gonzalez-Elipe, A. R., Munnera, G., Espinos, J. P. and Sanz, J. M., Surface. Sci. 220, 368 (1989).Google Scholar