Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T19:28:47.885Z Has data issue: false hasContentIssue false

An Experimental Determination of the Thermophysical Properties of [NZP]-Structure Type Ceramics

Published online by Cambridge University Press:  23 March 2012

Daniel J. Gregg
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
Inna Karatchevtseva
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
Gerry Triani
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
Gregory R. Lumpkin
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
Eric R. Vance
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.
Get access

Abstract

Calcium and barium zirconium phosphates were prepared by hot isostatic pressing and their thermophysical properties investigated for potential use as actinide hosts for inert matrix fuels (IMF) in light water reactors. The materials are thermally stable up to at least 1600°C in air, however they degrade above around 1400°C in an inert atmosphere. The heat capacity and thermal conductivity were measured from room temperature up to 1200°C. The thermal conductivity coefficient for both CZP and BZP at 1000°C is 1.0 W m-1 K-1, a relatively low thermal conductivity that requires NZP-type materials to be dispersed in a composite cercer or cermet IMF.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kleykamp, H., J. Nucl. Mater. 275, 1 (1999).10.1016/S0022-3115(99)00144-0Google Scholar
2. Degueldre, C., and Paratte, J.M., J. Nucl. Mater. 274, 1 (1999).10.1016/S0022-3115(99)00060-4Google Scholar
3. Lee, Y-W, Application of ceramic nuclear fuel materials for innovative fuels and fuel cycles, pp. 103111 in Advanced Reactors with Innovative Fuels, NEA/OECD, (Paris 2002).Google Scholar
4. Stewart, M.W.A., and Vance, E.R., J. Aust. Ceram. Soc. 42, 50 (2006).Google Scholar
5. Yamashita, T., Kuramoto, K., and Akie, H. et al. ., J. Nucl. Sci. Technol. 39, 865 (2002).10.1080/18811248.2002.9715270Google Scholar
6. Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Radha, Velchuri, and Vithal, M., J. Mater. Sci. 46, 2821 (2011).10.1007/s10853-011-5302-5Google Scholar
7. Scheetz, B.E., Agrawal, D.K., Breval, E., and Roy, R., Waste Management 14, 489 (1994).10.1016/0956-053X(94)90133-3Google Scholar
8. Yaroslavtsev, A.B., and Stenina, I.A., Russ. J. Inorg. Chem. 51, Suppl. 1, S97 (2006).10.1134/S0036023606130043Google Scholar
9. Orlova, A.I., Volkov, Yu.F., Melkaya, R.F., et al. ., Radiokhimiya 36, 295 (1994).Google Scholar
10. Vance, E.R., Cartz, L., and Karioris, F.G., J. Mater. Sci. 19, 2943 (1984).10.1007/BF01026971Google Scholar
11. Woodcock, D.A., Lightfoot, P., and Smith, R.I., J. Mater. Chem. 9, 2631 (1999).10.1039/a903489gGoogle Scholar
12. Shannon, R.D., Acta Crystallogr. A32, 751 (1976).10.1107/S0567739476001551Google Scholar
13. Orlova, A.I., Radiokhimiya 44, 385 (2002).Google Scholar
14. Bykov, D.M., Orlova, A.I., Tomilin, S.V., Lizin, A.A., and Lukinykh, A.N., Radiochemistry 48, 234 (2006).10.1134/S1066362206030052Google Scholar
15. Volkov, Yu.F., Tomilin, S.V., Orlova, A.I., Lizin, A.A., Spiryakov, V.I., and Lukinykh, A.N., Russ. J. Inorg. Chem. 50, 1660, (2005).Google Scholar
16. Orlova, A.I., Volgutov, V.Yu., Castro, G.R., Garcia-Granda, S., Khainakov, S.A., and Garcia, J.R., Inorg. Chem. 48, 9046 (2009).10.1021/ic9013812Google Scholar
17. Pet’kov, V.I., and Asabina, E.A., Glass and Ceramics 61, 7, (2004).Google Scholar
18. Pet’kov, V.I., Markin, A.V., Shchelokov, I.A., Smirnova, N.N., and Sukhanov, M.V., Russ. J. Phys. Chem. A. 84 (2010).10.1134/S0036024410040047Google Scholar
19. Krishnaiah, M.V., Joseph, J., Seenivasan, G., Govindan Kutty, K.V., J. Alloy Comp. 351, 212 (2003).10.1016/S0925-8388(02)01032-0Google Scholar
20. Pet’kov, V.I., Shchelokov, I.A., Markin, A.V., Smirnova, N.N., and Sukhanov, M.V., J. Therm. Anal. Calorim. 102, 1147, (2010).10.1007/s10973-010-0909-3Google Scholar
21. Liu, D.-M, J. Mater. Sci. Lett. 13, 129 (1994).10.1007/BF00416823Google Scholar
22. US Patent 5 102 836.Google Scholar
23. Chen, C.-J, Lin, L.-J, and Liu, D.-M, J. Mater. Sci. 29, 3733 (1994).10.1007/BF00357341Google Scholar
24. Pet’kov, V.I., Loshkarev, V.N., and Asabina, E.A., Russ. J. Appl. Chem. 77, 178 (2004).10.1023/B:RJAC.0000030345.04437.7fGoogle Scholar
25. Nitani, N., Yamashita, T., Matsuda, T., Kobayashi, S.-i., and Ohmichi, T., J. Nucl. Mater. 274, 15 (1999).10.1016/S0022-3115(99)00077-XGoogle Scholar
26. Hargman, D.L., MATPRO-Version11, A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior (Idaho National Eng. Lab, 1981).Google Scholar