Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T02:12:14.027Z Has data issue: false hasContentIssue false

An Environmentally Clean Liquid Precursor of Sulfur for Metalorganic Chemical Vapor Deposition (MOCVD) of Transition Metal Di-Sulfide Thin Films.

Published online by Cambridge University Press:  15 February 2011

Prasad N. Gadgil*
Affiliation:
Department of Physics, Stirling Hall, Queen's University, Kingston, Ontario, Canada K7L 3N6.
Get access

Abstract

A three member ring compound propylene sulfide, C3H6S is employed as a sulfur source for the Metalorganic Chemical Vapor Deposition (MOCVD) of stoichiometric thin films of iron pyrite (FeS2). Iron pentacarbonyl Fe(CO)5, a liquid, was precursor for iron. Propylene sulfide, (PS) a liquid ( b. p. = 72–75 °C, v. p. ∼ 87 torr @ 20°C ) decomposes cleanly and quantitatively as S2 and C3H6 (propylene) above 250°C. Deposition of thin films of pyrite and their analysis by X-ray diffraction and Mossbauer and X-ray Photoelectron spectroscopy is described. Liquid state, long term stability, clean and low temperature generation of active S2 species in vapor phase and gaseous by product C3H6 which can be burned to CO2 and H2O are the key advantages offered by propylene sulfide as a sulfur source.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Delannay, F., Appl. Catalysis, 116, 135 (1985).Google Scholar
2. Laman, F. C., Matsen, M. W. and Stiles, J. A. R., J. Electrochem. Soc., 133, 2441 (1986).Google Scholar
3. Jellineck, F., in Inorganic Sulfur Chemistry, Nicholas, G. (Ed.), (Elsevier Publishing Corporation, New York, 1968) ch. 19.Google Scholar
4. Iwakura, C., Isobe, N. and Tamura, H., Electrochimica Acta, 28, 269 (1983).Google Scholar
5. Kou, W. W. and Seehra, M. S., Phys. Rev., B, 18,7062 (1978).Google Scholar
6. Shuey, R. T., Semiconducting Ore Minerals, Developments in Economic Geology, Vol.4, (Elsevier, Amsterdam, 1975), p. 304.Google Scholar
7. Ennaoui, A., Hi~pfner, C., Ellmer, K., Fiechter, S. and Tributsch, H., in Proc. Of the 11th E. C. Photovoltaic Solar Energy Conf., Montreux (1992), p. 935.Google Scholar
8. Chatzitheodorou, G., Fiechter, S., Könenkamp, R., Kunst, M., Jaegermann, W. and Tributsch, H., Mater. Res. Bull., 21,1481 (1986).Google Scholar
9. Gadgil, P. N., Ph. D. thesis, Simon Fraser University (1991); P. N. Gadgil, US Patent No. 5 284 519 ( 8 February 1994).Google Scholar
10. Kubaschewaski, O., Iron Binary Phase Diagrams (Springer-Verlag, Berlin 1982), p. 125–28.Google Scholar
11. Rau, H., Kutty, T. R. N. and Carvalho, J. R. F. Gudes, J. Chem. Thermodyn., 5, 8,33, 1973.Google Scholar
12. Benson, S. W., Chem. Rev., 78, 23 (1978).Google Scholar
13. Jones, A. C., J. Crystal Growth, 129, 728(1993).Google Scholar
14. Lown, E. M., Sandhu, H. S., Gunning, H. E. and Strausz, O. P., J. Am. Chem. Soc. 90 (25) 7164 (1968); O. P. Strausz, personal communications.Google Scholar
15. Stull, D. R., Westrum, E. F. Jr., and Sinke, G., in Chemical Thermodynamics of Organic Compounds, (Academic Press, New York, 1970).Google Scholar
16. van der Heide, H., Hemmel, R., van Bruggen, C. P. and Hass, C., J. Solid State Chem., 13, 17 (1980).Google Scholar
17. Seehra, S. S., Montano, P. A., Seehra, M. S. and Sen, S. K., J. Mater. Sci. Lett., 14, 2761 (1979).Google Scholar