Skip to main content Accessibility help

An efficient top-emitting electroluminescent device on metal-laminated plastic substrate

  • L. W. Tan (a1), X. T. Hao (a1), K. S. Ong (a1), Y. Q. Li (a1) and F. R. Zhu (a1)...


An efficient flexible top-emitting organic light-emitting device (OLED) was fabricated on an aluminum-laminated polyethylene terephthalate substrate. A spin-coated light-emitting polymer layer was sandwiched between a silver anode and a multi-layered semitransparent cathode. The performance of polymer OLEDs was analyzed and compared with that of the devices having a conventional structure. An optical microcavity formed in the device enables to tune the emission color by varying the thickness of the active polymer layer. The OLEDs having a 110-nm-thick active polymer layer exhibited superior electroluminescence performance, with a turn-on voltage of 2.5V and a luminance efficiency of 4.56 cd/A at an operating voltage of 10V.



Hide All
1. Tang, C.W., and Vanslyke, S.A., Appl. Phys. Lett. 51 (12), 913 (1987).
2. Hung, L.S., and Chen, C.H., Mater. Sci. Engi. R 39 143 (2002).
3. Burroughes, J.H., Bradley, D.D.C., Brown, A. R., Marks, R.N., Mackay, K., Friend, R. H., Burn, P.L., and Holmes, A.B., Nature 347, 539 (1990).
4. Friend, R. H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Dos Santos, D.A., Bredas, J.L., Logdlund, M., and Salaneck, W.R., Nature 397, 121 (1999).
5. Lu, M.H., Weaver, M.S., Zhu, T.X., Rothman, M., Kwong, R.C., and Brown, J.J., Appl. Phys. Lett. 81, 3921 (2002).
6. Lai, S.L., Chan, M.Y., Fung, M.K., Hung, C.S., and Lee, S.T., Chem. Phys. Lett. 366, 128 (2002).
7. Burrows, P.E., Gu, G., Forrest, S. R., Vicenzi, E.P., and Zhou, T.X., J. Appl. Phys. 87, 3080 (2000).
8. Krasnov, A.N., Appl. Phys. Lett. 80, 3853 (2002).
9. Plichta, A., Weber, A., and Habeck, A., Mater. Res. Soc. Symp. Proc. 769, Warrendale, PA, 2003), paper H9.1.
10. Ong, K.S., Hu, J.Q., Shrestha, R., Zhu, F.R., and Chua, S.J., Thin Solid Films, in press (2004).
11. Gu, G., Burrows, P. E., Venkatesh, S., and Forrest, S. R., Opt. Lett. 22, 172 (1997).
12. Gustafsson, G., Treacy, G. M., Cao, Y., Klavetter, F., Colaneri, N. and Heeger, A. J., Synth. Met. 57, 4123 (1993).
13. Chwang, A.B., Rothman, M.R., Mao, S.Y., Hewitt, R.H., Weaver, M.S., Silvermail, J.A., Rajan, K., Hack, M., Brown, J.J., Chu, X., Moro, L., Krajewski, T., and Rutherford, N., Appl. Phys. Lett. 83, 413 (2003).
14. Sugimoto, A., Ochi, H., Fujimura, S., Yoshida, A., Miyadera, T., and Tsuchida, M., IEEE J. Sel. Top Quant. 10(1), 107 (2004).
15. Tokito, Shizuo, Tsutsui, Tetsuo, and Taga, Yasunori, J. Appl. Phys. 86(5), 2407(1999).
16. Bulovic, V., Khalfin, V.B., Gu, G., Burrows, P.E., Garbuzov, D.Z., Forrest, S.R., Phys. Rev. B, 58(7), 3730(1998).
17. Djurisic, A.B., and Rakic, A.D., Appl. Optics. 41(36), 7650 (2002).
18. Li, Y.Q., Tang, J.X., Xie, Z.Y., Hung, L.S., Lau, S.S., Chem. Phys. Lett. 386 (1–3): 128(2004).


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed