Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T20:42:33.794Z Has data issue: false hasContentIssue false

An Atomic-Scale Derived Continuous Approach for the Anisotropic Etching

Published online by Cambridge University Press:  10 February 2011

N. Moldovan
Affiliation:
IMT Bucharest, Sir. Erou lancu Nicolae 32 B, 72996, Romania, nmoldovan@jnrt.ro
S. Nedelcu
Affiliation:
IMT Bucharest, Sir. Erou lancu Nicolae 32 B, 72996, Romania, nmoldovan@jnrt.ro
H. C. Amon
Affiliation:
LAAS/CNRS, 7 Av. Colonel Roche 31007, Toulouse ex, France, camon@laas.fr
Get access

Abstract

Starting from the Ising model for the bond-breaking algorithm associated to the problem of anisotropie etching of crystals, a method is used to write the discrete master equation for etching normally to indefinite large planes. This equation links the values of the absence probabilities for bonds placed in neighbouring lattice planes and can be transformed to describe a continuous spatial field of probabilities. The method allows the calculation of the etching rate angular diagrams. Examples are shown for several orientations and sets of parameters governing the bond-breaking scheme at atomic level. Comparisons with experimental results are provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Frank, F.C., in “Growth and Perfection of Crystals”, edited by Doremus, R.H., Roberts, B.W., Tumbull, D., New York, John Wiley. 1958, p. 411 Google Scholar
[2] Batterman, B., J. Applied Physics, Vol. 28, (1957) p. 1236 Google Scholar
[3] ElliS, R.C., Journal of Applied Physics, Vol. 25, Nr. 12, Dec. 1954, p. 1497 Google Scholar
[4] Turner, D.R., Journal of the Electrochemical Society, Apr. 1956, p. 252 Google Scholar
[5] Tellier, C.R., Waterkowski, J.L., J. Matenals Science, Vol. 24, (1989), p. 1077 Google Scholar
[6] Seidel, H., Csepregi, L., Heuberger, A., Baumgärtel, H., Journal of Electrochem. Soc. Vol. 137, Nr. 11, Nov. 1990, p. 3612 Google Scholar
[7] Allongue, P., Costa-Kieling, V., Gerischer, H., J. Electrochem. Soc, Vol. 140, No. 4, Apr. 1993, p. 1009 Google Scholar
[8] Moldovan, N., Ilie, M., Avram, M., Proc. of Micro System Technologies, Berlin, 1991, p. 203 Google Scholar
[9] Moldovan, N., Illie, M., Materials Science & Engineering B37, (1996), p. 146 Google Scholar
[10] Camon, H. et. al., Proc. of Micro System Technologies 1, (1995), Springer-Verlag, p. 163 Google Scholar
[11] Camon, H., Moldovan, N., Moktadir, Z., Djafari-Rouhani, M., Ilie, M., Nedelcu, S., ECOSS 17, Genoa, Italy, Sept. 1996 Google Scholar
[12] Sato, K., Koide, A., Tanaka, S., Proc. of J.F.F.F. Symp., Japan, p. 1927 Google Scholar