Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T08:56:22.476Z Has data issue: false hasContentIssue false

An Apparatus for Magnetron Sputter Coating and Plasma Immersion Ion Implantation

Published online by Cambridge University Press:  21 February 2011

W. Ensinger
Affiliation:
Universität Augsburg, Institut für Physik, Augsburg, Germany
J. Hartmann
Affiliation:
Universität Augsburg, Institut für Physik, Augsburg, Germany
J. Klein
Affiliation:
Fraunhofer-Institut für Lasertechnik, Aachen, Germany
P. Usedom
Affiliation:
Fraunhofer-Institut für Lasertechnik, Aachen, Germany
B. Stritzker
Affiliation:
Universität Augsburg, Institut für Physik, Augsburg, Germany
B. Rauschenbach
Affiliation:
Universität Augsburg, Institut für Physik, Augsburg, Germany
Get access

Abstract

A coating apparatus which combines two material modification techniques, sputter coating and plasma immersion ion implantation, is described. The plasma is generated by an electron cyclotron resonance microwave plasma source. In the upper part of the vacuum chamber, the plasma is confined in a magnetic field by means of a solenoid. In the lower part, a magnetron sputter cathode is mounted which is used for depositing thin films on the sample. The sample is clamped onto a water-cooled sample holder which can be moved in vertical direction. It is connected to a semiconductor-based high voltage pulse generator which provides negative voltage pulses. In this apparatus, a substrate can be pre-implanted by plasma immersion ion implantation, then it can be coated by sputtering. Finally, the sputtered film can be modified by another ion implantation step.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Conrad, J.R. and Castagna, T., Bull. Am. Phys. Soc. 31 (1986) 1479Google Scholar
2 Conrad, J.R., J. Appl. Phys. 62 (1987) 777 Google Scholar
3 Tendys, J., Donnelly, I.J., Kenny, M.J., and Pollock, J.T.A., Appl. Phys. Lett. 53 (1988) 2143 Google Scholar
4 Collins, G.A., Hutchings, R., and Tendys, J., Mat. Sci. Eng. A139 (1991) 171 Google Scholar
5 Qian, X.Y., Cheung, N.W., Lieberman, M.A., Current, M.I., Chu, P.K., Harrington, W.L., Magee, C.W., and Botnick, E.M., Nucl. Instr. Meth. B 55 (1991) 821 Google Scholar
6 Kenny, M.J., Wielunski, L.S., Tendys, J., and Collins, G.A., Nucl. Instr. Meth. B 80/81 (1993)262 Google Scholar
7 Böhm, G. and Günzel, R., J. Vac. Sci. Technol. B12 (1994) 821 Google Scholar
8 Thomae, R.W., Seiler, B., Bender, H., Brutscher, J., Günzel, R., Halder, J., Klein, H., Müller, J., and Sarstedt, M., Nucl. Instr. Meth. Phys. Res. B99 (1995) 569 Google Scholar
9 Padmanabhan, K.R., Hsieh, Y.F., Chevallier, J., and Sorensen, G., J. Vac. Sci. Technol. Al (1983) 279 Google Scholar
10 Baglin, J.E.E., Nucl. Instr. Meth. Phys. Res. B39 (1989) 764 Google Scholar
11 Xiang, L., Ma, T.C., and Zhu, Y.C., Mat. Sci. Eng. A139 (1991) 193 Google Scholar
12 Pawel, J.E., Romana, L.J., McHargue, C.J., and Wert, J.J., Surf. Coat. Technol. 51 (1992) 179 Google Scholar
13 Conrad, J.R., Dodd, R.A., Han, S., Madapura, M., Scheurer, J., Sridharan, K., and Worzala, F.J., J. Vac. Sci. Technol. A8 (1990) 3146 Google Scholar
14 Ensinger, W., Hartmann, J., Bender, H., Thomae, R.W., Königer, A., Stritzker, B., and Rauschenbach, B., Surf. Coat. Technol., in pressGoogle Scholar
15 Doolittle, L.R., Nucl. Instr. Meth. Phys. Res. B9 (1985) 344 Google Scholar