Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T11:44:18.506Z Has data issue: false hasContentIssue false

An Alternate Mechanism for Porous Si Photoluminescence: Recombination in SiHx Complexes

Published online by Cambridge University Press:  15 February 2011

S. M. Prokes
Affiliation:
Naval Research Laboratory, Washington D.C. 20375.
O. J. Glembocki
Affiliation:
Naval Research Laboratory, Washington D.C. 20375.
V. M. Bermudez
Affiliation:
Naval Research Laboratory, Washington D.C. 20375.
R. Kaplan
Affiliation:
Naval Research Laboratory, Washington D.C. 20375.
L. E. Friedersdorf
Affiliation:
The Johns Hopkins University, Baltimore, MD 21218
P. C. Searson
Affiliation:
The Johns Hopkins University, Baltimore, MD 21218
Get access

Abstract

Porous silicon layers have been formed which exhibit photoluminescence (PL) peaks that do not blueshift with increasing porosity. Hydrogen desorption experiments have been performed in vacuum under anneals between 230°C–390°C. Simultaneous, in-situ PL measurements show that the PL intensity decreases and disappears with decreasing hydrogen content. Infrared spectroscopy (IR) measurements also show loss of hydride species in the same temperature range. These results indicate that hydrogen is important in the PL process. We suggest that silicon hydrides are the source of PL in porous SI.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2] Bsiesy, A., Vial, J.C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestein, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surface Science 254, 195 (1991).Google Scholar
[3] Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
[4] Details of the IR data will be published separately.Google Scholar
[5] Dillon, A.C., Gupta, P., Robinson, M.B., Bracker, A.S. and George, S.M., J. Electron Spectrosc. Relat. Phenom. 54/55, 1085 (1990).Google Scholar
[6] Crowell, J.E. and Lu, G., J. Electron Spectrosc. Rel. Phenom. 54/55, 1045 (1990).Google Scholar
[7] John, P., Odeh, I.M., Thomas, M.J.K., Tricker, M.J., and Wilson, J.I.B., Phys. Stat. Sol. 105, 499 (1981).Google Scholar
[8] Satoh, T. and Hiraki, A., Japan. J. Appi. Phys. 24, L491 (1985).Google Scholar
[9] Gupta, P., Dillon, A.C., Bracker, A.S. and George, S.M., Surf. Sci. 245, 360 (1991); and works cited therein.Google Scholar
[10] Sugiyama, K., Igarashi, T., Moriki, K., Nagasawa, Y., Aoyama, T., Sugino, R., Ito, T., and Hattori, T., Japan. J. Appl. Phys. 22, L2401 (1990); and ref. therein.Google Scholar
[11] Street, R.A., Adv. in Phys. D, 397 (1976).Google Scholar
[12] Wolford, D.J., Scott, B.A., Reimer, J.A. and Bradley, J.A., Physica 117B&118B, 920 (1983).Google Scholar
[13] Pitt, C.G., Bursey, M.M., and Rogerson, P.F., J. Am. Chem. Soc. 92, 519 (1970).Google Scholar
[14] Papaconstantopoulos, D.A. and Economou, E.N., Phys. Rev. B 24, 7233 (1981); and ref. therein.Google Scholar
[15] Yamasaki, S., Hata, N., Yoshida, T., Oheda, H., Matsuda, A., Okushi, H. and Tanaka, K., J. de Physique 42 C4297 (1981).Google Scholar
[16] Friedersdorf, L.E., Searson, P.C., Prokes, S.M., Glembocki, O.J., and Macaulay, J.M., submitted, Appl. Phys. Lett.Google Scholar