Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T14:19:30.382Z Has data issue: false hasContentIssue false

Amorphous Silicon/Silicon Germanium Alloy Superlattices with Periods from 1 to 100 NM

Published online by Cambridge University Press:  25 February 2011

J. P. Conde
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
V. Chu
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

The electron and hole transport perpendicular to the plane of the layers in a-Si:H, F/a-Si, Ge:H, F multilayers is analyzed. We measure the electron dark conductivity σd and its activation energy Ea, d, the photo conductivity σph and its exponent γ, the electron and hole mobility-deep trapping lifetime (μτd)e, h and the hole mobility-recombination lifetime (μτr)h. We identify three regions of barrier thickness ds with very different transport properties: (a) ds≲50Å, dominated by tunnelling between quantum confined states in the bottom of the wells; (b) 50Å ≲ds≲200Å, in which the well acts as the provider of an extra, controllable tail state density; and (c) ds≳200Å, where the individual layers are essentially decoupled.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abeles, B. and Tiedje, T., Phys. Rev. Lett., vol. 51, p. 2003, 1983.CrossRefGoogle Scholar
2. Munekata, H. and Kukimoto, H., Jpn. J. Appl. Phys., vol.22, p. L544, 1983.Google Scholar
3. Miyazaki, S., Ihara, Y. and Hirose, M., Phys. Rev. Lett., vol.59, p. 125, 1987.Google Scholar
4. Hattori, K., Mori, T., Okamoto, H. and Hamakawa, Y., Phys. Rev. Lett., vol.60, p. 825, 1988 CrossRefGoogle Scholar
5. Yoshimoto, M., Fuyuki, T. and Matsunami, H., in Mat. Res. Soc. Symp. Proc. Vol.118, ed. Hamakawa, Y., LeComber, P.G., Madan, A., Taylor, P.C., Thompson, M.J., p. 367, Materials Research Society, Pittsburgh, 1988.Google Scholar
6. Capasso, F., Science, vol.235, p. 172, 1987.CrossRefGoogle Scholar
7. Marfaing, Y., in 2nd E.C. Photovoltaic Solar Energy Conf., p. 287, Reidel, Dordrecht, 1979.CrossRefGoogle Scholar
8. Nakamura, G., Sato, K., Yukimoto, Y. and Shirahata, K., Jpn. J. Appl. Phys., vol.20, p. 227, 1981.CrossRefGoogle Scholar
9. Matsuda, A., Koyama, M., Ikuchi, N., Imanishi, Y. and Tanaka, K., Japan. J. AppL. Phys., vol.25, p. L54, 1986.Google Scholar
10. MacKenzie, K.D. and Paul, W., in Mat. Res. Soc. Symp. Proc. Vol.95, ed. Hamakawa, Y. and Madan, A., p. 281, Materials Research Society, Pittsburgh, 1987.Google Scholar
11. Wagner, S., Chu, V., Shen, D.S., Conde, I.P., Aljishi, S. and Smith, Z E., in Mat. Res. Soc. Symp. Proc. Vol. 118, ed. Hamakawa, Y., LeComber, P.G., Madan, A., Taylor, P.C., Thompson, M.J., p. 623, Materials Research Society, Pittsburgh, 1988.Google Scholar
12. Aljishi, S., Smith, Z E. and Wagner, S., in Advances in Amorphous Semiconductors, ed. Fritzsche, H., p. 887, World Scientific Publishing Co., Inc., 1989.Google Scholar
13. Shirai, H., Tanabe, A., Hanna, J., Oda, S., Nakamura, T. and Shimizu, I., Japn. J. of Appl. Phys., vol.25, p. L537, 1986.Google Scholar
14. Shirai, H., Tanabe, A., Hanna, J., Oda, S. and Shimizu, I., in Proc. of the Int. Workshop on Amorphous Semiconductors, ed. Fritzsche, H., Han, D.-X. and Tsai, C.C., p. 299, World Scientific Publishing Co., Singapore, 1987.Google Scholar
15. Conde, J.P., Aljishi, S., Shen, D.S., Angell, M. and Wagner, S., in J. Non-Cryst. Solids, vol.97&98, p. 939, 1987.Google Scholar
16. Conde, J.P., Aljishi, S., Chu, V., Shen, D.S. and Wagner, S., Solar Cells, vol.24, p. 223, 1988.Google Scholar
17. Conde, J.P., Shen, D.S., Chu, V. and Wagner, S., Superlattices and Microstructures, 1989, to be published.Google Scholar
18. Conde, J.P. and Wagner, S., in Advances in Amorphous Semiconductors, ed. Fritzsche, H., p. 1099, World Scientific Publishing Co., Inc., 1989.Google Scholar
19. Kolodzey, J., Aljishi, S., Schwarz, R., Slobodin, D., and Wagner, S., J. Vac. Sci. Technol., vol. A 4 (6), p. 2499, 1986.Google Scholar
20. Aljishi, S., Smith, Z E., Slobodin, D., Kolodzey, J., Chu, V., Schwarz, R., and Wagner, S., in Mat. Res. Soc. Proc. Vol.70, ed. Adler, D., p. 181, Materials Research Society, Pittsburgh, 1986.Google Scholar
21. Aljishi, S., Chu, V., Smith, Z E., Shen, D.S., Conde, J.P., Slobodin, D., Kolodzey, J. and Wagner, S., J. Non-Cryst. Solids, vol.97&98, p. 1023, 1987.CrossRefGoogle Scholar
22. Street, R.A., Phys. Rev. B, vol.27, p. 4924, 1983.CrossRefGoogle Scholar
23. Tiedje, T., “Information about Band-Tail States from Time-of-Flight Experiments,” in Hydrogenated Amorphous Silicon, Device Applications, ed. Pankove, J.I., Semiconductors and Semimetals, vol.21C,, p. 207, Academic Press, New York, 1984.Google Scholar
24. Chu, V., Aljishi, S., Conde, J.P., Smith, Z E., Shen, D.S., Slobodin, D., Kolodzey, J., Wronski, C.R. and Wagner, S., in Conf. Rec. of the 19th IEEE PVSC, p. 610, IEEE, New York, 1987.Google Scholar
25. Evangelisti, F., J. Non-Cryst. Solids, vol.77&78, p. 969, 1985.Google Scholar