Hostname: page-component-68945f75b7-qvshk Total loading time: 0 Render date: 2024-08-06T05:00:35.223Z Has data issue: false hasContentIssue false

Amorphous and Microcrystalline Silicon-based Photovoltaic

Published online by Cambridge University Press:  21 March 2011

Subhendu Guha*
Affiliation:
United Solar Ovonic Corporation 3800 Lapeer Road Auburn Hills, MI 48326, U.S.A.
Get access

Abstract

The last two decades have witnessed tremendous progress in the science and technology of amorphous and microcrystalline silicon-based photovoltaic. Advances in the understanding of materials and devices have led manufacturers to expand their production capacity; the production of solar panels based on this technology exceeded 25 MW in 2003. Hydrogen dilution in the active gas mixture during deposition has played a key role in improving the quality of the materials and the performance of the devices. In this paper I shall review the properties of the optimum material for device application, and discuss the production status. I shall also report on the new opportunities that are opening up for these products for space and stratospheric applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, J., Banerjee, A., and Guha, S., Solar Energy Mat. & Solar Cells, 78, 597 (2003).Google Scholar
2. Shah, A. V., Meier, J., Vallat-Sauvain, E., Wyrsch, J., Kroll, U., Droz, C., and Graf, U., Solar Energy Mat. & Sol. Cells, 78, 459 (2003).Google Scholar
3. Guha, S., Narasimhan, K. L., and Pietruszko, S. M., J. Appl. Phys. 52, 859 (1981).Google Scholar
4. Tsu, D. V., Chao, B. S., Ovshinsky, S. R., Guha, S., and Yang, J., Appl. Phys. Lett, 71, 1317 (1997).Google Scholar
5. Vetterl, O., Carius, R., Houben, L., Kluth, O., Lambertz, A., Muck, A., Rech, B., and Wagner, H., Solar Energy Mat. & Sol. Cells, 62, 97 (2000)Google Scholar
6. Gallagher, A., J. Appl. Phys., 63, 2406 (1988).Google Scholar
7. Matsuda, A., 25th IEEE PVSC, 1029, (1996).Google Scholar
8. Matsuda, A., J. Non-Cryst. Solids, 59–60, 767 (1983).Google Scholar
9. Tsai, C. C., Anderson, G. B., Thomson, R., and Wacker, B, J. Non-Cryst. Solids, 114, 151 (1989).Google Scholar
10. Shibata, N., Fukuda, K., Ohtoshi, H., Hanna, J., Oda, S., and Shimizu, I, Mat. Res. Soc Symp. Proc., 95, 225 (1987).Google Scholar
11. Sriraman, S., Agarwal, S., Aydil, E. S. and Maroudas, D., Nature, 418, 62 (2002).Google Scholar
12. Williamson, D. L., Mat. Res. Soc. Symp. Proc. 557, 251 (1999).Google Scholar
13. Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D. and Mahan, A.H., Appl. Phys. Lett. 74, 1860 (1999).Google Scholar
14. Koh, J. H., Lee, Y., Fujiwara, H., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett., 73, 1526 (1998).Google Scholar
15. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
16. Tawada, Y., Yamagishi, H., and Yamamoto, K., Solar Energy Mat. & Solar Cells, 78, 647 (2003).Google Scholar
17. Izu, M. and Ellison, T., Solar Energy Mat. & Solar Cells, 78, 613 (2003).Google Scholar
18. Yan, B., Yue, G., Yang, J., Guha, S., Williamson, D. L., Han, D., and Jiang, C. S., (to be published).Google Scholar