Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-02T22:20:19.306Z Has data issue: false hasContentIssue false

Amorphization of Zr/Ni Bilayers by Ion-Beam-Mixing

Published online by Cambridge University Press:  21 February 2011

Jacek Jagelski
Affiliation:
institute of Electronic Materials Technology, Wólczyńska 133, 01–919 Warsaw, Poland
L. Thome
Affiliation:
Centre de Spectromérie Nucléaire et de Spectrométrie de Masse, Bât. 108, 91405 Orsay, France
M. Kopcewicz
Affiliation:
institute of Electronic Materials Technology, Wólczyńska 133, 01–919 Warsaw, Poland
Get access

Abstract

The amorphization process induced by ion-beam-imxing was studied for the Zr/Ni bilayer system by means of the RBS/channelling and CEMS techniques. The number of atoms mixed per one incident atom was found to be the same for σ100 K and 300 K irradiations, whereas it was increased by the factor of 2.5 for 500 K irradiation what indicates, that the change in the mixing mechanism occurred above room temperature. The results show that amorphization of the Zr/Ni system is controlled by the number of mixed atoms and depends on the irradiation temperature. A change in CEMS spectra was observed at σ770 K what suggests that recrystallization of the amorphous phase occurs at this temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ossi, P.M., Riv. del Nuovo Cim. 15(5), 1 (1992).CrossRefGoogle Scholar
2. Thomè, L., Nuclear Physics Applications on Materials Sciences, Vol. 144 of NATO Advanced Study Institute, eds. Recknagel, E. and Soares, J.C. (Kluwer, Norwell, MA, 1988), p. 183.CrossRefGoogle Scholar
3. Benyagoub, A. and Thomè, L., Phys.Rev. B 38, 10205 (1988).CrossRefGoogle Scholar
4. Matteson, S. and Nicolet, M.A., Ann. Rev. Mater. Sci. 13, 339 (1983).CrossRefGoogle Scholar
5. Paine, B.M. and Averback, R.S., Nucl. Instr. and Meth. B 7/8, 666 (1985).CrossRefGoogle Scholar
6. Liu, B.X., Phys. Stat. Sol. (a) 94, 11 (1986).CrossRefGoogle Scholar
7. Kim, S.J., Nicolet, M.A., Averback, R.S. and Peak, D., Phys. Rev. B 37, 38 (1988).CrossRefGoogle Scholar
8. Thomè, L., Benkoulal, T., Jagielski, J. and Vassent, B., Europhys. Lett., 20, 413 (1992).CrossRefGoogle Scholar
9. Benkoulal, T., Jagielski, J., Thomè, L., Vassent, B. and Kopcewicz, M., Nucl. Instr. Meth., in press.Google Scholar
10. Cotterau, E., Camplan, J., Chaumont, J., Meunier, R. and Bernas, H., Nucl. Instr. Meth. B 45, 293 (1990).CrossRefGoogle Scholar
11. Blanpain, B., Revesz, P., Doolittle, L.R., Purser, K.H. and Mayer, J.W., Nucl. Instr. Meth., B 34, 459 (1988).CrossRefGoogle Scholar
12. Akano, U.G., Thompson, D.A., Smeltzer, W.W. and Davies, J.A., J. Mater. Res., 3, 1063 (1988).CrossRefGoogle Scholar
13. Feldman, L.C., Mayer, J.W. and Picraux, S.T., Materials Analysis by Ion Channelling (Academic Press, New York, 1982).Google Scholar
14. Hesse, J. and Rubartsch, A., J. Phys. E, 7, 526 (1974).CrossRefGoogle Scholar
15. LeCaer, G. and Dubois, J.M., J. Phys. E, 12, 1083 (1979).Google Scholar
16. Unruh, K.M. and Chien, C.L., Phys. Rev., 30, 4968 (1984).CrossRefGoogle Scholar
17. Kopcewicz, M., Williamson, D.L. and Cecil, F.E., Hyp. Inter., 56, 1599 (1990).CrossRefGoogle Scholar
18. Buschow, K.H.J., J. Phys. F: Met. Phys., 14, 593 (1984).CrossRefGoogle Scholar