Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T03:14:10.719Z Has data issue: false hasContentIssue false

Amorphization and Annealing of 6H SiC Implanted with N-Type, P-Type or Isovalent Dopants

Published online by Cambridge University Press:  21 February 2011

J. A. Spitznagel
Affiliation:
Westinghouse Science & Technology Center, 1310 Beulah Rd., Pittsburgh. PA 15234
Susan Wood
Affiliation:
Westinghouse Science & Technology Center, 1310 Beulah Rd., Pittsburgh. PA 15234
W. J. Choyke
Affiliation:
University of Pittsburgh. Department of Physics, Pittsburgh. Pittsburgh. PA 15260
R. P. Devaty
Affiliation:
University of Pittsburgh. Department of Physics, Pittsburgh. Pittsburgh. PA 15260
J. Ruan
Affiliation:
University of Pittsburgh. Department of Physics, Pittsburgh. Pittsburgh. PA 15260
Get access

Abstract

lons of boron, phosphorous, titanium and neon were implanted into (0001) oriented 6H SiC crystals at 300 K. Implantation energies and fluences were chosen to produce equal (calculated) displacements per atom at similar peak damage depths and a randomized (metaminct or amorphous) zone extending to the front surface. RBS/channeling was used to test the amorphization criteria. Dopant effects on regrowth kinetics and microhardness have been determined by isochronal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choyke, W. J. and Patrick., Lyle Phys. Rev. B 4. 1843 (1971).Google Scholar
2. Makarov., V. V. Tuomi, T., Naukkarinen, K., Luomajavi, M., and Riihonen, M., Appl. Phys. Lett. 35. 922 (1979).Google Scholar
3. Thompson, D. A., Chan, M. C., and Campbell, A. B.. Can. J. Phys. 54. 626 (1976).Google Scholar
4. Makarov, V. V., Sov. Phys. Solid State 13, 1974 (1972).Google Scholar
5. Hart, R. R.. Dunlap, H. L., and Marsh, O. J., Rad. Eff. 9, 261 (1971).Google Scholar
6. Addamiano, A., Anderson, G. W., Comas, J., Hughes, H. L. and Lucke, W., J. Electrochem. Soc. 119, 1355 (1972).Google Scholar
7. Wright, R. B. and Gruen, D. M., Rad. Eff. 33. 133 (1977).Google Scholar
8. Wright, R. B., Varma, R.. and Gruen, D. M., J. Nucl. Mater. 63, 415 (1976).Google Scholar
9. Campbell, A. B., Mitchell., J. B. Shewchun., J. Thomson, D. A. and Davies, J. A., Silicon Carbide 1973, Proc. 3rd Int. Conf. on SiC, edited by Marshall, R. C., Faust, J. W. Jr., and Ryan, C. E. (South Carolina Press, 1974). p. 486.Google Scholar
10. Campbell., A. B. Shewchun, J., Thomson., D. A. and Mitchell, J. B., in Ion Implantation in Semiconductors, edited by Namba, S. (Plenum, New York, 1975).Google Scholar
11. Bohn, H. G., Williams, J. M., McHargue, C. J., and Begun, G. M., J. Mater. Res. 2, 107 (1987).Google Scholar
12. Spitznagel, J. A., Wood., Susan Choyke., W. J. Doyle., N. J Bradshaw, J.. and Fishman, S. G., Nucl. Instr. and Methods B 16: 237243 (1986).Google Scholar
13. Wood, Susan, Spitznagel., J. A. Choyke., W. J. Bradshaw, J., Greggi, J. Jr. and Doyle, N. J.. Mat. Res. Symp. Proc., Vol.60, 459 (1986).Google Scholar
14. More, R. M. and Spitznagel., J. A. Radiation Effects, 60: 27 (1982).Google Scholar