Skip to main content Accessibility help
×
Home

Aluminum in Magnesium Silicate Perovskite: Synthesis and Energetics of Defect Solid Solutions

  • Alexandra Navrotsky (a1), Mirko Schoenitz (a1), Hiroshi Kojitani (a1) (a2), Hongwu Xu (a1), Jianzhong Zhang (a3), Donald J. Weidner (a3), Masaki Akaogi (a2) and Raymond Jeanloz (a4)...

Abstract

MgSiO3 - rich perovskite is expected to dominate the Earth's lower mantle (pressures > 25 GPa), with iron and aluminum as significant substituents. The incorporation of trivalent ions, M3+, may occur by two competing mechanisms: MgA+ SiB = MA + MB and SiB = AlB + 0.5 VO. Phase synthesis studies show that both substitutions do occur, and the nonstoichiometric or defect substitution is prevalent along the MgSiO3 - MgAlO2.5 join. Oxide melt solution calorimetry has been used to compare the energetics of both substitutions. The stoichiometric substitution, represented by the reaction 0.95 MgSiO3 (perovskite) + 0.05 Al2O3 (corundum) = Mg0.95Al0.10Si0.95O3 (perovskite), has an enthalpy of -0.8±2.2 kJ/mol. The nonstoichiometric reaction, 0.90 MgSiO3 (perovskite) + 0.10 MgO (rocksalt) + 0.05 Al2O3 (corundum) = MgSi0.9Al0.1O2.95 (perovskite) has a small positive enthalpy of 8.5±4.6 kJ/mol. The defect substitution is not prohibitive in enthalpy, entropy, or volume, is favored in perovskite coexisting with magnesiowüstite, and may significantly affect the elasticity, rheology and water retention of silicate perovskite in the Earth.

Copyright

References

Hide All
1. Horiuchi, A., Ito, E., and Weidner, D. J., Am. Mineral. 72, 357360 (1987).
2. Shim, S. H. and Duffy, T. S., Am. Mineral. 85, 354363 (2000).
3. Hama, J. and Suito, K., J. Geophys. Res. 103, 74437462 (1998).
4. Fiquet, G., Dewaele, A., Andrault, D., Kunz, M., and Bihan, T. Le, Geophys. Res. Lett. 27, 2124 (2000).
5. Ito, E., Akaogi, M., Topor, L., and Navrotsky, A., Science 249, 12751278 (1990).
6. Akaogi, M. and Ito, E., Geophys. Res. Lett. 20, 18391842 (1993).
7. Liu, L., EPSL 36, 237245 (1977).
8. Kanzaki, M., Phys. Earth. Planet. Inter. 49, 168175 (1987).
9. Irifune, T., Koizumi, T., and Ando, J., Phys. Earth. Planet. Inter. 96, 147157 (1996).
10. O'Neill, B. and Jeanloz, R., J. Geophys. Res. 99, 1990119915 (1994).
11. Wood, B. J. and Rubie, D. C., Science 273, 15221524 (1996).
12. Anderson, O. L. and Hama, J., Am. Mineral. 84, 221225 (1999).
13. Fei, Y., “Solid solutions and element partitioning at high pressures and temperatures,” Reviews in Mineralogy - Ultrahigh-Pressure Mineralogy: Physics and Chemistry of Earth's Deep Interior, ed. Hemley, R. J., (Mineralogical Society of America, 1998) pp. 343367.
14. Hirsch, L. M. and Shankland, T. J., Geophys. Res. Lett. 18, 1305–308 (1991).
15. Fitz Gerald, J. D. and Ringwood, A. E., Phys. Chem. Miner. 18, 4046 (1991).
16. Navrotsky, A., Science 284, 17881789 (1999).
17. Kreuer, K. D., Solid State Ionics 97, 115 (1997).
18. Nowick, A. S. and Du, Y., Solid State Ionics 77, 137146 (1995).
19. Takahashi, T. and Iwahara, H., Rev. Chim. Miner. 17, 243253 (1980).
20. Navrotsky, A., Chem. Mater. 10, 27872793 (1998).
21. Topor, L. and Navrotsky, A., “Advances in calorimetric techniques for high pressure phases,” High Pressure Research: Application to Earth and Planetary Sciences, ed. Syono, Y. and Manghnani, M. (Tena Publishing Company and American Geophysical Union, 1992) pp. 7176.
22. Akaogi, M. and Ito, E., Phys. Earth Planet. Inter. 114, 129140 (1999).

Related content

Powered by UNSILO

Aluminum in Magnesium Silicate Perovskite: Synthesis and Energetics of Defect Solid Solutions

  • Alexandra Navrotsky (a1), Mirko Schoenitz (a1), Hiroshi Kojitani (a1) (a2), Hongwu Xu (a1), Jianzhong Zhang (a3), Donald J. Weidner (a3), Masaki Akaogi (a2) and Raymond Jeanloz (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.