Skip to main content Accessibility help
×
Home

Al-Oxynitride Buffer Layer Facilities for PrOX/SiC Interfaces

  • Karsten Henkel (a1), Rakesh Sohal (a2), Carola Schwiertz (a3), Yevgen Burkov (a4), Mohamed Torche (a5) and Dieter Schmeißer (a6)...

Abstract

We investigate the dielectric properties of Praseodymium based oxides and silicates by preparing MIS structures consisting of a metal layer (M), PrOX (praseodymium oxide) as a high-k insulating layer (I), and silicon (Si) or silicon carbide (SiC) as semiconductor substrates (S).

The use of a buffer layer between PrOX and SiC is necessary as we found destructive interactions like silicate and graphite formation between these materials. Based on a higher permittivity value than SiO2 and a good lattice matching in conjunction with nearly the same thermal expansion coefficient to SiC, we focus on aluminum oxynitride (AlON) as a suitable buffer layer for this high-k/wide-bandgap system. We report on results achieved by Synchrotron Radiation Photoemission Spectroscopy (SRPES) and by electrical measurements.

In our spectroscopic investigations we found a stable AlON/3C-SiC interface as well as no elemental carbon and silicate contributions in the core levels after thin PrOX deposition and annealing up to 900°C.

In electrical characterizations of PrOX/AlON stacks on silicon we already found a strong improvement in the leakage current down to values of 10-7 A/cm2 at an CET of 4nm. We observed an interface state density in the range of 5x1011-1x1012/eVcm2 and 1-5x1012/eVcm2 on Si and SiC, respectively.

Copyright

References

Hide All
1. Zolper, J.C., and Skowronski, M: MRS Bull. 30, 273 (2005).
2. Zschech, E. et al.: Advances in Solid State Physics 45, 375 (2005).
3. Osten, H.J., Bugiel., E., Fissel, A.: Sol. Stat. Elec. 47, 2161 (2003).
4. Goryachko., A. et al.: Phys. Status Solidi C 1(2), 265 (2004).
5. Schmeißer, D., Müssig, H.-J., and Dabrowski, J.: Appl. Phys. Lett. 85 (1), 88 (2004).
6. Henkel, K. et al.: MRS Proc. 911, B1011 (2006).
7. Robertson, J.: J. Non-Cryst. Solids 303, 94 (2002)
8. Wilk, G.D., Wallace., R. M., Anthony, J. M.: J Appl Phys 89, 5243 (2001).
9. Kukli, K. et al.: Chem. Mater. 16, 5162 (2004).
10. Schmeißer, D., Müssig, H.-J.: J. Phys.-Condens. Mat. 16, S153 (2004).
11. Tanner, C.M. et al.: Appl. Phys. Lett. 90, 061916 (2007).
12. Afanas'ev, V.V. et al.: Appl. Phys. Lett. 82 (6) 922 (2003).
13. Nigro, R. Lo et al.: Toro, R.G. Mat. Sci. Sem. Proc. 9, 1073 (2006).
14. Grossner, U. et al.: 6th Eur. Conf SiC Rel. Mat.- CSCRM 2006, Abstract book, Tu5.4
15. Perez-Tomas, A. et al.: J Electrochem. Soc. 152, G259 (2005).
16. Cheong, K.Y. et al: Electrochem. Sol. Stat. Lett. 10, H69 (2007).
17. Yamashita., H., Fukui., K., Misawa., S., and Yoshida, S.: J. Appl. Phys. 50, 896 (1979).
18. Collins, A.T., Lightowlers, E.C., and Dean, P.J.: Phys. Rev. 158 (3), 833 (1967)
19. Weks, T.W. et al.: Appl. Phys. Lett. 67, 401 (1995).
20. King, S.W. et al.: J Appl. Phys. 86, 4483 (1999).
21. Goryachko, A. et al.: Phys. Status Solidi A 201, 245 (2004).
22. Torche., M., Henkel., K., and Schmeißer, D.: Mater. Sci. Eng. C 26, 1127 (2006).
23. Hoffmann., P., Mikalo, R.P., and Schmeißer, D., J. Non-Cryst. Solids 303 (1), 6 (2002).
24. Nicollian, E.H., Brews, J.R.: MOS Physic and Technology. Wiley, New York 1982.
25. Sohal, R. et al.: Mat. Sci. Sem. Proc. 9, 945 (2006).
26. Lupina, G. et al.: J Appl. Phys. 99, 114109 (2006).
27. Ligatchev., V., Rusli, Z. Pan: Appl. Phys. Lett. 87, 242903 (2005).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed