Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-26T12:33:07.217Z Has data issue: false hasContentIssue false

AlN Films Deposited by LP-MOCVD Atomic Layer Deposition at Lower Temperatures Using DMEAA and Ammonia

Published online by Cambridge University Press:  21 February 2011

J.N. Kidder Jr.
Affiliation:
Department of Materials Science and Eng., University of Washington, Seattle, WA 98195
J. S. Kuo
Affiliation:
Department of Chemical Engineering, University of Washington, Seattle, WA 98195
T.P. Pearsall
Affiliation:
Department of Materials Science and Eng., University of Washington, Seattle, WA 98195
J.W. Rogers Jr.
Affiliation:
Department of Chemical Engineering, University of Washington, Seattle, WA 98195
Get access

Abstract

We have investigated the deposition of AlN thin films on Si(100), Al2O3(0001), and Al2O3(0112) substrates at lower temperatures (523–723 K) using a novel aluminum source, dimethylethylamine:alane (DMEAA), with ammonia as a nitrogen source in a low-pressure MOCVD atomic layer growth process. At reactor pressures of 25 and 50 Torr a four-step sequence of reactant flow steps separated by flush steps was cycled. We observed a tendency toward a self-limiting growth rate as the DMEAA step flow time was increased. The deposition uniformity was observed to be dependent on temperature and non-uniform deposition occurred at higher temperatures. The microstructure and crystalline orientation were examined using x-ray diffraction and crystalline A1N films were deposited at temperatures as low as 573 K. Crystallite size decreased with substrate temperature and at 523 K. amorphous films were deposited. At T > 650 K preferentially oriented crystalline films were deposited with orientations of Si(100)//AIN(0001), Al2O3(0001)//AIN(0001), Al2O3(0112)//AIN(11 20).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hasegawa, F., Takahashi, T., Kubo, K. and Nannichi, Y., Jpn. J. Appl. Phys. 26, p. 1555 (1987).Google Scholar
2 Ohuchi, F. S. and Russell, P. E., J. Vac. Sci. Tech. A 5, p. 1630 (1987).Google Scholar
3 Chu, T. L. and Kelm, J. R.W., J. Electrochem. Soc. 122, p. 997 (1975).Google Scholar
4 Sitar, Z., Paisley, M. J., Yan, B., Davis, R. F., Ruan, J. and Choyke, J. W., Thin Solid Films 200, p. 311 (1991).Google Scholar
5 Khan, M. A., Kuznia, J. N., Skogman, R. A., Olson, D. T., MacMillan, M. and Choyke, W. J., Appl. Phys. Lett. 61, p. 2539 (1992).Google Scholar
6 Manasevit, H. M., Erdmann, F. M. and Simpson, W. I., J. Electrochem. Soc. 118, p. 1864 (1971).Google Scholar
7 Stringfellow, G. B., Organometallic vapor-phase epitaxy: Theory and practice, (Academic Press Inc., San Diego CA, 1989).Google Scholar
8 Amato, C. C., Hudson, J. B. and Interrante, L. V., Mat. Res. Soc. Symp. Proc. 282, p. 611 (1993).Google Scholar
9 Gladfelter, W. L., Boyd, D. C., Hwang, J.-W., Haasch, R. T., Evans, J. F., Ho, K.-L. and Jensen, K., Mat. Res. Soc. Symp. Proc. 131, p. 447 (1993)Google Scholar
10 Interrante, L. V., Lee, W., McConnell, M., Lewis, N. and Hall, E., J. Electrochem. Soc. 136, p. 472 (1989).Google Scholar
11 Gordon, R. G., Riaz, U. and Hoffman, D. M., J. Mater. Res. 7, p. 1679 (1992).Google Scholar
12 Ruff, J. K., Inorg. Synth. 9, p. 30 (1967).Google Scholar
13 Liu, H., Ph.D. Thesis, University of Washington (1995).Google Scholar
14 Gladfelter, W. L., Boyd, D. C. and Jensen, K. F., Chem. Mater. 1, p. 339 (1989).Google Scholar
15 Ohtsuka, N., Ashino, T., Ozeki, M. and Nakajima, K., in Gallium Arsenide and Related Compounds 1992, edited by Ikegami, T., Hasagawa, F. and Takeda, Y., (Proceedings of the 19th International Symposium, IOP, Karuizawa, p. 925)Google Scholar
16 House, J. E., J.of Organomet. Chem. 263, p. 267 (1984).Google Scholar
17 Frigo, D. M., Eijden, G. J. M. v., Reuvers, P. J. and Smit, C. J., Chem. Mater. 6, p. 190 (1994).Google Scholar
18 Abernathy, C. R., J. Vac. Sci. Technol. A 11, p. 869 (1993).Google Scholar
19 Hobson, W. S., Harris, T. D., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 58, p. 77 (1991).Google Scholar
20 Fujii, K., Suemune, I. and Yamanishi, M., Appl. Phys. Lett. 62, p. 1420 (1993).Google Scholar
21 Khan, M. A., Olson, D. T. and Kuznia, J. N., Appl. Phys. Lett. 65, p. 64 (1994).Google Scholar
22 Kidder, J. N., Kuo, J. S., Ludviksson, A., Pearsall, T. P., Rogers, J. W., Grant, J. M., Allen, L. R. and Hsu, S. T., J. Vac. Sci. Technol. A 13, p. 711 (1995).Google Scholar
23 Bertolet, D. C., Lui, H. and Rogers, J. W. Jr., J. Appl. Phys. p. (1994).Google Scholar
24 Tischler, M. A. and Bedair, S. M., J. Cryst. Growth 77, p. 89 (1986).Google Scholar
25 Tischler, M. A. and Bedair, S. M., in Atomic Layer Epitaxy, edited by Suntola, T. and Simpson, M. (Blackie and Sons, London, 1990) p. 145.Google Scholar
26 Dapkus, J. D., Maa, B. Y., Chen, Q., Jeong, W. G. and DenBaars, S. P., J. Cryst. Growth 107, p. 73 (1991).Google Scholar
27 Sun, C. J., Kung, P., Saxler, A., Ohsato, H., Haritos, K. and Razeghi, M., J. Appl. Phys. 75, p. 3964 (1994).Google Scholar
28 Liu, J. K., Lakin, K. M. and Wang, K. L., J. Appl. Phys. 46, p. 3703 (1975).Google Scholar
29 Kung, P., Sun, C. J., Saxler, A., Ohsato, H. and Razeghi, M., J. Appl. Phys. 75, p. 4515 (1994).Google Scholar