Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T05:02:28.375Z Has data issue: false hasContentIssue false

Al Photodeposition and Light-Induced Nucleation on p-Type Si from TMA

Published online by Cambridge University Press:  25 February 2011

J.E. Bouree
Affiliation:
CNRS, Laboratoire de Physique des Solides, 92195 MEUDON, France
J. Flicstein
Affiliation:
CNET, Laboratoire de Bagneux, 92220 BAGNEUX, France
J.F. Bresse
Affiliation:
CNET, Laboratoire de Bagneux, 92220 BAGNEUX, France
J.F. Rokmeluere
Affiliation:
CNRS, Laboratoire de Physique des Solides, 92195 MEUDON, France
A.M. Pougnet
Affiliation:
CNET, Laboratoire de Bagneux, 92220 BAGNEUX, France
Get access

Abstract

Photodecomposition of trimethylaluminum (TMA) flowing with H2 on p-type Si under UV irradiation is shown to be exclusively a reaction confined to surface species. Thus photonucleation and photodeposition of Al on Si is controlled either by Si-H or Si-O and Si-OH bonds. In the regions where Si-O and Si-OH are present, Al-O forms, which inhibits Al deposition either directly or via the adsorption of C containing photoproducts. In the other regions where Si is H terminated, it is assumed that H2 adsorbs dissociatively on Al clusters, thus leading to the formation followed by the desorption of methane from the adsorbed phase. For this reason, Al thin films are C contamination free.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ehrlich, D.J. and Tsao, J.Y., J. Vac. Sci. Technol. Bl, 969 (1983).Google Scholar
2. Osgood, R.M. and Gilgen, H.H., Ann. Rev. Mater. Sci. 15,549 (1985).Google Scholar
3. Higashi, G.S. and Rothberg, L.J., J. Vac. Sci. Technol. B3, 1460 (1985); Appl. Phys. Lett. 41, 1288 (1985).Google Scholar
4. Sanchez, E., Shaw, P.S., O'Neill, J.A. and Osgood, R.M., Chem. Phys. Lett. 141, 153 (1988); P.S. Shaw, E. Sanchez, Z. Wu and R.M. Osgood, Chem. Phys. Lett. 151, 449 (1988).Google Scholar
5. Bouree, J.E., Flicstein, J. and Nissim, Y.I., in Photon, Beam and Plasma Stimulated Chemical Processes at Surfaces, MRS Symp.Proc. 75, 129 (1987); J.E. Bourée and J. Flicstein, NATO ASI Series EI3, 121 (1988).CrossRefGoogle Scholar
6. Higashi, G.S., J. Chem. Phys. 88, 422 (1988).Google Scholar
7. Motooka, T., Gorbatkin, S., Lubben, D., Eres, D. and Greene, J.E., J. Vac. Sci. Technol. A4, 3146 (1986); D. Lubben, T. Motooka, J.F. Wendelken and J.E. Greene, NATO ASI Series B (1989), to be published.CrossRefGoogle Scholar
8. Orlowski, T.E. and Mantell, D.A., in Laser and Particle-Beam Chemical Processing for Microelectronics. MRS Symp. Proc. 101,165 (1988); in Laser and Particle-Beam Chemical Processes on Surfaces. MRS Symp. Proc. 129 (1989), to be published.Google Scholar
9. Zhang, Y. and Stuke, M., J. Cryst. Growth 93, 143 (1988) T. Beuermann and M. Stuke, Appl. Phys. B (1989), to be published.Google Scholar
10. Flicstein, J., Bouree, J.E., Bresse, J.F. and Pougnet, A.M., in Lager and Particle-Beam Chemical Processing for Microelectronics, MRS Symp. Proc. 101, 49 (1988)Google Scholar
11. Bourée, J.E. and Flicstein, J., NATO ASI Series B198, 33 (1989); J.E. Bouree and J. Flicstein, in Laser and Particle-Beam Chemical Proceesing for Microelectronics, MRS Symp. Proc. 1-1, 55 (1988).Google Scholar
12. Flicstein, J. and Bouree, J.E., Appl. Surf. Sci., 3, 443 (1989).Google Scholar
13. Tsao, J.Y. and Ehrlich, D.J., Appl. Phys. Lett. 45, 617 (1984); J. Cryst. Growth 68, 176 (1984).Google Scholar
14. Burrows, V.A., Chabal, Y.J., Higashi, G.S., Raghavachari, K. and Christman, S.B., Appl. Phys. Lett. 52, 998 (1988); Y.J. Chabal, G.S. Higashi, K. Raghavachari and V.A. Burrows, J. Vac. Sci. Technol. Al, 2104 (1989).Google Scholar
15. Schlapbach, L., NATO ASI series B 136, 397 (1986).Google Scholar
16. Higashi, G.S., private communication.Google Scholar