Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-08T20:12:58.690Z Has data issue: false hasContentIssue false

AgSbSe2 thin films for photovoltaic structures produced through reaction of chemically deposited selenium thin films with Ag and Sb2S3

Published online by Cambridge University Press:  01 February 2011

K. Bindu
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos -62580, Méxicobk@cie.unam.mx; pkn@cie.unam.mx
M. T. S. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos -62580, Méxicobk@cie.unam.mx; pkn@cie.unam.mx
P. K. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos -62580, Méxicobk@cie.unam.mx; pkn@cie.unam.mx
Get access

Abstract

Selenium thin films (350 nm) deposited from a 0.01 M solution of Na2SeSO3 of pH 4.5 maintained at 10 °C for 13 h, have been used as a source of selenium vapour for reaction with vacuum deposited Ag thin film on chemically deposited Sb2S3+Ag layers. When a stack of Sb2S3+Ag is heated in contact with Se film, AgSbSe2 is formed through solid state reaction of Sb2S3 and Ag2Se. The latter is formed at 80°C through the reaction of Ag-film in Se-vapour. This thin film is photoconductive and p-type. The optical band gap is nearly 1 eV and dark conductivity, 10-3 Ω-1cm-1. This thin film has been incorporated to form a photovoltaic structure, SnO2:F-(n)CdS:In-(i)Sb2S3-(p)AgSbSe2-silver print. Voc> 400 mV and Jsc>12 mA/cm2 have been observed in this under an illumination intensity of 1 kWm-2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ramanathan, K., Hason, F. S., Smith, S., Young, D. L., Contreras, M. A., Johnson, P. K., Pudov, A. O. and Sites, J. R., J. Phys. Chem. Solids 64, 1495 (2003).Google Scholar
2. Madelung, O. “Semiconductors other than Group IV Elements and III –V Compounds”, Data in Science and Technology (Berlin-Springer, 1992) p. 72.Google Scholar
3. Nair, M. T. S., Roderíguez-Lazcano, Y., Peña, Y., Messina, S., Campos, J. and Nair, P. K., in Symposium L, Materials for Photovoltaics MRS Fall meeting 2004.Google Scholar
4. Soliman, H., Agdel-Hady, D. and Ibrahim, E., J. Phys.: Condens. Matter 10, 847 (1998).Google Scholar
5. Kitaev, G. A. and Fovaouv, G. M., Zh. Prikl. Khim 43, 169 (1970).Google Scholar
6. Bindu, K., Lakshmi, M., Bini, S., Sudha Kartha, C., Vijayakumar, K. P., Abe, T. and Kashiwaba, Y., Semicond. Sci. Technol. 17, 270 (2002).Google Scholar
7. Nair, M.T. S., Peña, Y., Campos, J., Garcia, V. M. and Nair, P. K., J. Electrochem. Soc. 145, 2113 (1998).Google Scholar
8. Bindu, K. and Nair, P. K., Semicond. Sci. Technol. 19, 1348 (2004).Google Scholar
9. Nair, M. T. S, Nair, P. K., Zingaro, R. A. and Meyers, E. A., J. Appl. Phys. 75, 1557 (1994).Google Scholar