Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-23T09:31:43.486Z Has data issue: false hasContentIssue false

Ag Layers on Cu(110): Bonding, Structure, and Stability

Published online by Cambridge University Press:  25 February 2011

T. N. Taylor
Affiliation:
Chemical and Laser Sciences Division Los Alamos National Laboratory, Los Alamos, NM 87545
M. A. Hoffbauer
Affiliation:
Chemical and Laser Sciences Division Los Alamos National Laboratory, Los Alamos, NM 87545
L. Borodovsky
Affiliation:
Mechanical and Electronic Engineering Division, Los Alamos National Laboratory, Los Alamos, NM 87545
J. G. Beery
Affiliation:
Mechanical and Electronic Engineering Division, Los Alamos National Laboratory, Los Alamos, NM 87545
C. J. Maggiore
Affiliation:
Mechanical and Electronic Engineering Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

The atomic-level properties ( bonding, structure, composition ) and thermal stability of Ag overlayers on Cu(110) have been investigated using combined surface and high energy ion beam techniques. Analysis of the first Ag adatom layer with LEED shows that the Ag is initially confined to the [110] troughs and that further deposition results in a Ag(111) layer exhibiting c(2×4) symmetry. Rutherford backscattering analysis gives absolute coverages that are consistent with the surface science coverage determination. Thermal desorption of CO from the trough composite reveals a lower ( more Ag-like ) binding energy than that for clean Cu(110). Continuous films grown cold at thicknesses <115 Å are found to agglomerate above 500 K exposing a tenacious Ag-Cu interface like that formed by one monolayer deposition. Ion beam analysis has been employed to characterize the agglomerate coverage and depth distribution for these degraded films. Thin films grown 900Å thick exhibit much higher thermal stability, giving detectable interfacial degradation only after heating above 725 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bauer, E., Surf. Sci. 7, 351(1967).CrossRefGoogle Scholar
2. Bauer, E. and Poppa, H., Thin Solid Films 12, 167(1972).Google Scholar
3. Van der Veen, J.F., Surf. Sci. Reports 5, 199(1985).Google Scholar
4. Venables, J. A., Spiller, G. D. T., and Hanbucken, M., Rep. Prog. Phys. 47, 399(1984).CrossRefGoogle Scholar
5. Taylor, T. N., Hoffbauer, M. A., Maggiore, C. J., and Beery, J. G., J. Vac. Sci. Technol., in press.Google Scholar
6. Doolittle, L. R., Nucl. Instrum. and Methods in Phys. Research B9, 44(1985)Google Scholar
7. Paffett, M. T., Campbell, C. T., Taylor, T. N., and Srinivasan, S., Surf. Sci. 154, 284(1985).CrossRefGoogle Scholar
8. Venables, J. A., Derrien, J., and Janssen, A. P., Surf. Sci. 95, 411(1980).Google Scholar
9. Van Loenen, E. J., Iwami, M., Tromp, R. M., and Van der Veen, J. F., Surf. Sci. 137, 1(1984).Google Scholar
10. Harendt, C., Goshnick, J., and Hirschwald, W., Surf. Sci. 152–153, 453(1985).Google Scholar
11. Peebles, H. C., Beck, D. D., White, J. M., and Campbell, C. T., Surf. Sci. 150, 120(1985).CrossRefGoogle Scholar
12. Schoen, J. M., Poate, J. M., Doherty, C. J., and Melliar-Smith, C. M., J. Appl. Phys. 50, 6910(1979).Google Scholar
13. Paffett, M. T., Campbell, C. T., and Taylor, T. N., J. Chem. Phys. 85, 6176(1986).Google Scholar
14. Bauer, E. and Kolaczkiewicz, J., in Proceedings of the 9th International Vacuum Congress and the 5th International Congress on Solid Surfaces, Madrid, Spain, 1983, page 363.Google Scholar