Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-09T15:29:40.148Z Has data issue: false hasContentIssue false

AFM Morphology Study of Si1-Y GeY:H Films Deposited by LF PE CVD from Silane-Germane with Different Dilution

Published online by Cambridge University Press:  01 February 2011

L. Sanchez
Affiliation:
Institute National for Astrophysics, Optics and Electronics, Puebla 7200, México
A. Kosarev
Affiliation:
Institute National for Astrophysics, Optics and Electronics, Puebla 7200, México
A. Torres
Affiliation:
Institute National for Astrophysics, Optics and Electronics, Puebla 7200, México
T. Felter
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
A. Ilinskij
Affiliation:
Benemerita Universidad Autonoma de Puebla, Puebla, 7200, México
Get access

Abstract

The morphology of Si1-Y GeY:H films in the range of Y=0.23 to 0.9 has been studied by AFM. The films were deposited by Low Frequency (LF) PE CVD at substrate temperature Ts=300 C and discharge frequency f=110 kHz from silane+germane mixture with and without, Ar and H2 dilution. The films were deposited on silicon and glass substrates. AFM images were taken and analyzed for 2x2 μm2 area. All the images demonstrated “grain” like structure, which was characterized by the height distribution function F(H) average roughness <H>, standard height deviation Rq, lateral correlation length Lc, area distribution function F(s), mean grain area <s>, diameter distribution function F(d), and mean grain diameter <d>. The roughness <H> of the films monotonically increases with Y for all dilutions, but more significantly in the films deposited without dilution. Lc continuously grows with Y in the films deposited without dilution, while more complex behavior of Lc(Y) is observed in the films deposited with H- or Ar dilution. The sharpness of F(H) characterized by curtosis γ depends on dilution, and the sharpest F(H) are for the films deposited with Ar ( γ=5.30,Y=0.23) and without dilution (γ=4.3, Y=0.45). Isothermal annealing caused an increase of <H>, Lc in the films deposited with H- and Ar dilutions, while in the films prepared without dilution the behavior was more complex, depending on the substrates. After the annealing a significant sharpening of the height distributions, F(H), was observed in the films deposited with H dilution or without dilution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rath, J.K., Tichelaar, F.D., R.E.I. Schropp. Solar Energy Materials & Solar Cells, 74, 533(2002).Google Scholar
2 Isomura, M., Nakahata, K., Shima, M., Taira, S., Wakisaka, K., Tanaka, M., Kiyama, S.. Solar Energy Materials&Solar cells, 74, 519 (2002).10.1016/S0927-0248(02)00069-7Google Scholar
3 Krause, M., Stiebig, H.,. Carius, R., and Wagner, H.. Mat. Res. Soc. Symp. Proc., 664 A26.5.1 (2001).10.1557/PROC-664-A26.5.1Google Scholar
4 Masini, G., Cencelli, V., Colace, L., DeNotaristefani, F., Assanto, G.. Physica E, 16, 614 (2003).10.1016/S1386-9477(02)00642-2Google Scholar
5 Ambrosio, R.C., Torres, A., Kosarev, A., Heredia, A.H., Garcia, M.. Mat.Res. Soc. Symp. Proc.,808, A4.29 (2004).10.1557/PROC-808-A4.29Google Scholar
6 Torres, A., Kosarev, A., Garcia Cruz, M.L., Ambrosio, R.. J.Non-Cryst. Solids, 329, 179 (2003).10.1016/j.jnoncrysol.2003.08.037Google Scholar
7 Garcia, M., Ambrosio, R., Torres, A., Kosarev, A.. J.Non-Cryst. Solids, 338-340, 744 (2004).10.1016/j.jnoncrysol.2004.03.082Google Scholar
8 Luft, W., Tsuo, Y.Simon. “Hydrogenated amorphous silicon alloy deposition processes”, Marcel Dekker, Inc., 1993.Google Scholar
9Properties of amorphous silicon and its alloys”, Ed. By Searle, T., EMIS Datareviews Series No.19, INSPEC 1998.Google Scholar
10 Budagian, B.G., Sherechenkov, A.A., Gorbulin, G.L., Chernomordic, V.D.. Physica B, 325, 394 (2003).10.1016/S0921-4526(02)01692-7Google Scholar
11 Kosarev, A., Torres, A., Hernandez, Y., Ambrosio, R., Zuniga, C., Felter, T.E., Asomoza, R.. Kudriavtsev, Y., Silva-Gonzalez, R., Gomez-Barojas, E., Ilinski, A., Abramov, A.S.. J.Mater.Res. 2005 (in press)Google Scholar
12 Dalakos, G.T., Plawsky, J.L., Persans, P.D.. Mat. Res. Symp. Proc. 762, A5.14.1-6 (2003)10.1557/PROC-762-A5.14Google Scholar
13 Oever, P.J. van den, Sanden, M.C.M. van de, Kessels, W.M.M.. Mat. Res. Soc. Symp. Proc. 808, A9.35.1-6 (2004).10.1557/PROC-808-A9.35Google Scholar
14 Jordan, W.B., Carlson, E.D., Johnson, T.R., Wagner, S.. Mat. Res. Symp. Proc., 762, A6.5.1-6 (2003).10.1557/PROC-762-A6.5Google Scholar
15 Jordan, W.B., Wagner, S.. Mat. Res. Soc. Symp. Proc., 808, A 9.4753 (2004).Google Scholar
16 Li, L., Li, Yuan-Min, Selvan, J.A. Anna, Delahoy, A.E., Levy, R.A.. Mat. Res. Soc. Symp. Proc., 762, A5.15.16 (2003).10.1557/PROC-762-A5.15Google Scholar
17 Kosarev, A., Felter, T.E, Torres, A., Ilinski, A., Silva, R., Zuniga, C., Rojas, Y., Abramov, A.. Am. Phys. Soc. Annual Meeting, 2003, March 3-7, Austin, Texas, Abstracts, Y22.006.Google Scholar
18 Zhao, Y., Wang, Gwo-Ching, Lu, Tong-Ming. “Characterization of amorphous and crystalline rough surface: principles and applications”, Academic Press, p.716 (2001)Google Scholar