Skip to main content Accessibility help

Aem Investigation of Tetrahedrally Coordinated TI4+ in Nickel-Titanate Spinel

  • Ian M. Anderson (a1) (a2), Jim Bentley (a1) and C. Barry Carter (a2)


The stoichiometry and site distribution of metastable nickel-titanate spinel has been studied with AEM. The results of EDXS and EELS agree that the metastable spinel is nonstoichiometric and titanium-deficient relative to its hypothetical endmember composition, “Ni2TiO4”. The titanium deficiency has been determined by EELS to be Δ = 0.025 ± 0.005. Channeling-enhanced microanalysis and ELNES studies indicate that the Ti4+ and Ni2+ cations are in tetrahedral and octahedral coordination, respectively, so that the metastable spinel has the normal cation distribution: Til−Δ[Ni2(1+Δ)]O4. This result is consistent with neutron powder-diffraction studies and SiO2-solubility measurements of similar equilibrated and quenched spinel-containing specimens. Metastable nickel-titanate spinel therefore contrasts with stable stoichiometric spinels which tend to the inverse cation distribution, Me[MeTi]O4.



Hide All
1. Siegel, R. W., Annu. Rev. Mater. Sci. 21, 559578 (1991).
2. Principles of Analytical Electron Microscopy, edited by Joy, D. C., Romig, A. D. Jr., and Goldstein, J. I. (Plenum Press, New York, 1986).
3. Krivanek, O. L., Disko, M. M., Taftø, J., and Spence, J. C. H., Ultramicrosc. 9, 249254 (1982)
4. Spence, J. C. H. and Tafto, J., J. Microsc. 130, 147154 (1983).
5. Laqua, W., Schulz, E. W., and Reuter, B., Z. anorgan. allg. Chem. 433, 167180 (1977).
6. Muan, A., J. Amer. Ceram. Soc. 75, 13571360 (1992).
7. Anderson, I. M., Ph. D. thesis, Cornell University, 1993.
8. Lager, G. A., Armbruster, T., Ross, F. K., Rotella, F. J., and Jorgensen, J. D., J. Appl. Cryst. 14, 261264 (1981).
9. Roberts, N. F. and Muan, A., J. Amer. Ceram. Soc. 75, 13821389 (1992).
10. Tarte, P., Nature 191, 10021003 (1961).
11. Bland, J. A., Acta Cryst. 14, 875881 (1961).
12. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley and Sons, New York, 1976).
13. Spurr, A. R., J. Ultrastr. Res. 26, 3143 (1969).
14. Brydson, R., Sauer, H., and Engel, W., in Transmission Electron Energy Loss Spectrometry in Materials Science, edited by Disko, M. M., Ahn, C. C., and Fultz, B. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1992), pp. 131154.
15. Goldstein, J. I., Williams, D. B., and Cliff, G., in reference (2), pp. 155217.
16. Anderson, I. M., Bentley, J., and Carter, C. B., in preparation.
17. Anderson, I. M., in Proceedings of the 50 Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G. W., Bentley, J., and Small, J. A. (San Francisco Press, San Francisco, CA, 1992), pp. 12401241.
18. Anderson, I. M., Tietz, L. A., and Carter, C. B., in Structure and Properties of Interfaces in Materials, edited by Clark, W. A. T., Dahmen, U., and Briant, C. L. (Mater. Res. Soc. Proc. 238, Pittsburgh, PA, 1992), pp. 807814.

Related content

Powered by UNSILO

Aem Investigation of Tetrahedrally Coordinated TI4+ in Nickel-Titanate Spinel

  • Ian M. Anderson (a1) (a2), Jim Bentley (a1) and C. Barry Carter (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.