Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T12:48:25.766Z Has data issue: false hasContentIssue false

Advanced Thermal Processing of Semiconductor Materials by Flash Lamp Annealing

Published online by Cambridge University Press:  17 March 2011

W. Skorupa
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden, Germany nanoparc GmbH, Dresden – Rossendorf, Germany
D. Panknin
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden, Germany
M. Voelskow
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden, Germany
W. Anwand
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden, Germany
T. Gebel
Affiliation:
nanoparc GmbH, Dresden – Rossendorf, Germany
R. A. Yankov
Affiliation:
nanoparc GmbH, Dresden – Rossendorf, Germany
Silke Paul
Affiliation:
Mattson Thermal Products GmbH, Dornstadt, Germany
Wilfried Lerch
Affiliation:
Mattson Thermal Products GmbH, Dornstadt, Germany
Get access

Abstract

The use of flash lamp annealing for processing semiconductor materials is outlined. Specific applications include ultra-shallow junction formation and heteroepitaxial growth of improved quality thin films of cubic silicon carbide. It is demonstrated that flash lamp annealing holds great promise as a technique for fabricating novel devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fiory, A.T., J. Electron. Mater. 31, 981 (2002).Google Scholar
2. Lerch, W., Bayha, B., Downey, D.F., and Arevalo, E.A., Electrochem. Soc. Symp. Proc. 2001- 9, 321 (2001).Google Scholar
3. Ito, T., Iinuma, T., Murakoshi, A., Akutsu, H., Suguro, K., Arikado, T., Okumura, K., Yoshioka, M., Owada, T., Imaoka, Y., Murayama, H., and Kusuda, T., Jpn. J. Appl. Phys. 41, 2394 (2002).Google Scholar
4. Gelpey, J., K. Elliott, Camm, D., McCoy, S., Ross, J., Downey, D.F., and Arevalo, E.A., 210st Electrochem. Soc. Meeting, Symp. Q1, May 12-17, 2002, paper 735Google Scholar
5. International Technology Roadmap for Semiconductors 2002, Update; Semiconductor Industry Association, 4300 Stevens Creek Blvd., San Jose, CA 95129 (http://public.itrs.net).Google Scholar
6. Wieser, E., Wissenschaft und Fortschritt 35, 94 (1985).Google Scholar
7. Stoemenos, J., Panknin, D., Eickhoff, M., Heera, V., and Skorupa, W., J. Electrochem. Soc. 151, G136–G143 (2004).Google Scholar
8. Gebel, T., Voelskow, M., Skorupa, W., Mannino, G., Privitera, V., Priolo, F., Napoletani, E., and Carnera, A., Nucl. Instr. Meth. Phys. Res. B 186, 287 (2002).Google Scholar
9. Skorupa, W., Gebel, T., Yankov, R.A., Paul, S., Lerch, W., Downey, D.F., and Arevalo, E.A., submitted to J. Electrochem. Soc. (2004).Google Scholar
10. Panknin, D., Stoemenos, J., Eickhoff, M., Heera, V., Vouroutzis, N., Krötz, G., and Skorupa, W., Mat. Sci. Forum, 353–356, 151 (2001).Google Scholar