Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T04:11:48.878Z Has data issue: false hasContentIssue false

Advanced Computational Design of Intermediate-Band Photovoltaic Material V-substituted MgIn2S4

Published online by Cambridge University Press:  31 January 2011

Irene Aguilera
Affiliation:
aguilera@etsit.upm.es, Universidad Politécnica de Madrid, Instituto de Energía Solar & Dept. Tecnologías Especiales, Madrid, Spain
Pablo Palacios
Affiliation:
pablop@etsit.upm.es, Universidad Politécnica de Madrid, Instituto de Energía Solar & Dept. Tecnologías Especiales, Madrid, Spain
Kefren Sànchez
Affiliation:
kefren@etsit.upm.es, Universidad Politécnica de Madrid, Instituto de Energía Solar & Dept. Tecnologías Especiales, Madrid, Spain
Perla Wahnòn
Affiliation:
perla@etsit.upm.es, Universidad Politécnica de Madrid, Instituto de Energía Solar & Dept. Tecnologías Especiales, Madrid, Spain
Get access

Abstract

An intermediate-band material based on thiospinel semiconductor MgIn2S4 is presented. This material is proposed as high efficiency photovoltaic material for intermediate-band solar cells. We analyze V substitution for In in the parent compound MgIn2S4 and the formation of the V d-states intermediate band. For the proper characterization of the width and position of this band inside the band gap, the standard one-shot GW method within the plasmon-pole approximation is applied. The electronic properties thus obtained are discussed and compared to those studied with Density Functional Theory (DFT), and the advantages and the limitations of the two methods are discussed. In addition, DFT electronic-charge density analysis is shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Luque, A. and Martí, A., Phys. Rev. Lett. 78, 5014 (1997).Google Scholar
2 Palacios, P., Sánchez, K., Conesa, J. C., and Wahnón, P., Phys. Status Solidi A 203, 1395 (2006).Google Scholar
3 Palacios, P., Sánchez, K., Conesa, J. C., Fernández, J. J., and Wahnón, P., Thin Solid Films 515, 6280 (2007).Google Scholar
4 Palacios, P., Sánchez, K., Wahnón, P., and Conesa, J. C., J. Solar Energy Eng. 129, 314 (2007).Google Scholar
5 Sirimanne, P. M., Sonoyama, N., and Sakata, T., J. Solid State Chem. 154, 476 (2000).Google Scholar
6 Wakaki, M., Shintani, O., Ogawa, T., and Arai, T., Jpn. J. Appl. Phys. 19, 255 (1980).Google Scholar
7 Palacios, P., Aguilera, I., Sánchez, K., Conesa, J. C., and Wahnón, P., Phys. Rev. Lett. 101, 046403 (2008).Google Scholar
8 Hohenberg, P., Kohn, W., Phys. Rev. B 136, 864 (1964); W. Kohn, L. J. Sham, Phys. Rev. A 140, 1133 (1965).Google Scholar
9 Gonze, X. et al., Z. Kristallogr. 220, 558562 (2005).Google Scholar
10 Kresse, G. and Hafner, J., Phys. Rev. B 47, RC558 (1993); G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).Google Scholar
11 Troullier, N., and Martins, J. L., Phys. Rev. B 43, 1993 (1990).Google Scholar
12 Fuchs, M., and Scheffler, M., Comput. Phys. Commun., 119, 6798 (1999).Google Scholar
13 Hedin, L., Phys. Rev. 139, A796–A823 (1965).Google Scholar
14 Hybertsen, M. S., and Louie, S. G., Phys. Rev. Lett. 55, 14181421 (1985).Google Scholar
15 Marinelli, M., Baroni, S., and Meloni, F., Phys. Rev. B 38, 8258 (1988).Google Scholar
16 Aguilera, I., Palacios, P., Sánchez, K., Wahnón, P., submitted for publication.Google Scholar
17 Aryasetiawan, F. and Gunnarsson, O. Phys. Rev. Lett. 74, 32213224 (1995).Google Scholar
18 Faleev, S. V., Schilfgaarde, M. van, and Kotani, T., Phys. Rev. Lett. 93, 126406 (2004).Google Scholar
19 Bruneval, F., Vast, N., Reining, L., Phys. Rev. B 74, 045102 (2006).Google Scholar
20 Bruneval, F. et al., Phys Rev. Lett. 97, 267601 (2006).Google Scholar